ePages 5

Design and Cartridge Development Guide

- Version 5.04 -

epages

The information contained in this document is subject to change without notice at any time.

This document and all of its parts are protected by copyright. All rights, including copying, reproduction, translation,
storage on microfilm and all forms of archival and processing in electronic form are expressly reserved.

All corporations, products, and trade names are trademarks or registered trademarks of the respective owners.

Copyright © 2007 ePages Software GmbH All rights reserved.

Should you have questions or suggestions about our products, please contact us at the following address:

ePages Software GmbH
Leutragraben 1

07743 Jena

Germany

Tel.: +49 (0)36 41 /573 -100
Fax: +49 (0)36 41 /573 -111

E-mail: support@epages.de, pm@ePages.de
WWW: www.ePages.de

Jena, April 2007

Page 2 ePages 5 - Design and Cartridge Development Guide

mailto:support@epages.de
mailto:pm@epages.de
http://www.epages.de/

Table of Contents

1. T (o Te [V Lot 4 o] [P 7
1.1 Contents of this GUIdE...cceerueeenririieiiiiiiiiierreereenereeeneee 7

1.2 ReqUITEMENES ciuvivnieriierinerenereeenerenerneenernneenseesernnsensens 8

1.3 Typographic CoOnVeNntions ...ccceveeeeeneeeenerenirennerennerenneennens 8
BaSiC PriNCIPLeS «evuienieiiiiiiieiiieireietc e e c et eneeneeneeneanees 9
2. Object Orientation..ccccceeeueieieiiiiiieniieiieeenneeneeenrenens 11
2% N 111 011 11 ¢ 1 Vol - SO 11

2.2 ODbJECE AP ottt eetie e e reneeeneeeeneeennereneesnnesenns 12

S JO A\ 4 4 {1 0111 (-1 TP 15
3.1 Language-dependent Attributes.....ccccceuuiiviiiiiniiiinennnnns 16

3.2 Attributes with Pre-defined Values.....ccccceueeerriviinnnnnnns 17

3.3 Reference AttribULeS...cocieieneieiernieecreeernereirenereeeneenene 17

3.4 Adding AttribULES ..cuueeeeeeieeeeceeiieierceeeerreereeereeneees 17

3.5 Attribute APl ..eeeieie e 18

4, Rights and ROLEScuuverveiiiiiiiiiiececececeeeeee e, 21
4.1 Registering Actions for ObjectS..cceuveeureeceniieirennrenenennes 21

4.2 Assigning Actions to ROIEScvevvieniieneeniienceeieenerencennens 22

4.3 ASSIZNING RIGNES wuvvenereireiriieeieeiiireiicrireeneeceeeneeneens 23

5. Difference Between Userand Customer.................. 25
6. URL ACEIONS ceuienieiiiieiiieiieietieeneenceeeneeneeneencencencennns 29
6.1 VIieWACHIONS..iviieiieireiieereereereereereereereereereereesesensensenses 29

6.2 ChangeACHiONS..uuuieeeeeeeeirieeiieeierieerreeererereenennenenns 29

AN £ -1 11] 01 £} {13 RPN 31
7.1 TeChNOLOZY cevueriiiniiiiiiiiiiee et eeeeeeeeeneeeeaeeeeennanns 31

7.2 Template ProCess...ccciieiiiueiiiiiiiiiiiieciiiecenecceeceneeennens 31

7.3 Basic Web Page StruCture....ciceeeeeeenceeeeneeencenerenenneenens 35

7.4 Overlaying Templates.ccceeieeeeneeeriennieinerieeneeeieeneeencennnes 35

7.5 Template Debugging ...cceeeeniieniiiiiiiiiiiiiieeceeeeeeeaens 36

8. PageType CoNCePt .cuciiiieieiiiiiiceierececreeeereraceennns 39
8.1 LOGiCal StrUCtUIE..cvueeeeeneieiiiieiietieetie e eeneennens 39

8.2 Display LeVelS...cuuereueeruiiiineriieieiineenereneennecnnesennennnnns 41

8.2.1 Original TEMPLAte ..ccerveriirinceirecininierineieiseicrsnsssnnes 41

8.2.2 Template Hierarchyccceeueeeieiiiviniiiiiiciiveceeeneeeen, 42

8.2.3 Object Method template...............eeveeeueeieereuennannnnn. 45

8.3 Processing PageTypPesS .cccciiueiiuieeeiinciuieeninciincennsencsnnnns 45

9. Multiple Languages—Language Tags ...cccoeeurrnrreneennnen 49
9.1 Syntax for Language Ta8S «.eeeeeeenrenrrenrennrenerennennrencennnns 49

9.2 Using XML Language Files ...cceeevuiieniiiiiiiiiiiiecieneeenens 50

9.3 Overlaying XML Language FilesScccceereueeinceeniiennnennnns 55

9.4 Localising Database Contentccceevueeviiiiiiiinninnnennnns 58

1 O TS I I 61
10.1 Syntax fOr TLE ceuuveuiirnieniieirenienerncenereneeneenernnernneeneennes 61

10.2 TLEVaAriables cccueeeeeeeeeiiiiiiiictccce et e eeees 61

10.3 TLE Statements . .ccccieieiieiiei e e eereeeaene 63

Table of Contents

ePages 5 - Design and Cartridge Development Guide

Page 3

Table of Contents

200 0 R | PPN 64

10.3.2 #INCLUDE ...ccuvveienereriencenrrenrnncencrnerensensennsnscencrnssensanes 65

10.3.3 #LOCAL..ceuiee it it iiteceectnecreeeeeereneeenssnnssnnssnnnsnnnns 65

10.3.4 HSET .ttt etee et e erae s eeee s e ea e saneanes 66

10.3.5 HGET cuienieeiiiiiiiieiteieeete e eeeeeereeteeenesnnceesneennsencanes 66

10.3.6 #CALCULATE ..cuuiiitietieeeieiencenereeerneenerencencenerneenncanes 67

10.3.7 HWITH .cerenienrreiennrnecencrerranreecencrnscensanssnssaessnsrnssensanss 67

10.3.8 #LOOP...cciiieriienrinnritnentrittnscinsstaisrsrsssnsssasssassssssssnnes 67

10.3.9 #JOIN ..o e crecreeceteeeeeeceeceneeeneesnnesnnnsnnnsennns 68

10.3.10 HFUNCTION ...iunitietieeeieiteenerteerneenernnceesneennsancnnes 68

10.3.11 #HBLOCK . et iiiiieiiieiiei e e rteereenerenceneenernennsanns 68

10.3.12 #HWITH_LANGUAGEceuieeiiniteiieneieiencenereeennennes 68

10.3.13 HREM ..ouierieienernrencenrrenrencencrnnsensenssnssnesensrnssensanss 69

10.4 Error TLE conen e s e s e s e s e e e 69

10.4.1 H#FOIMEITOT..cuecieiieieeceecetnecreceeeeeeeeneesncsnnesananennns 69

10.4.2 #FormError_<InputField>.....cceevvuerinniiieniiiieccvieeeee. 69

10.4.3 #FORM_ERROR......ceetuiteienitnrinertiereenerencenceneraeenncenes 70

10.4.4 HFOIMEITOTS.Cii? tiiuriinnirenininscnnssinnsrsssssnssrnsssnesssesssnses 70

10.4.5 #WITH_ERROR. ... curiirireicetticreereereneeenncennecnnnsnnnsnnnns 70

10.4.6 #ERROR_VALUE...ccu et reccticcrtecreereerenecrneeneecnnennens 71

10.5 Formatting TLE Variablesccuueevueeiiiiiiiiiiiiiiinnieieennennns 71

10.6 OpPerators ..ccceveeeieiieiiinirrneinirenerresnesensssnssnessnsssnssssssnns 73

10.7 Creating a TLE FUNCEION wvuuveiiniieiiiiicicrcececececeeeeens 75

10.8 Creating Dynamic TLE Variablesc.cccceeevuneevnccrnninnnnnnn. 76

10.9 Creating a TLE Formatter....ccccieeeeeieeniiecieieecceeeneennenn. 78
Cartridge Development...cccvieeeeeiieieieiieieiieieneeereeneennenn. 79
R O o ¢ [- T3 81
11.1 Cartridge StrUCTUME.cuuceeeeeeeeirerreirerrnreeeeneernnenneennennns 81

11.2 Creating a Cartridge Structure......ccceeeeviiniiiiiiiniiennnnnen. 83

11.3 Installer / Cartridge.pm ...ccuueieeniiiiiiiniiiiieceiieeeeneeeeee, 83

11.4 Installing - NMaKe ..cvueivniiiiiiiicrcecc e, 85

11.5 UninsStalling..cceuveeiieniieniiniiiniieinieirenereneeeeenereneeeneennennes 86

11.6 Copying Cartridge Directoriescceeeveeeerneeenerenneennnenns 86

11.7 Back Office EXtensionS....cceueeieeiiiiiieiiieciecceee e, 87

12. Creating a Distribution.....cccceuevevviviriiiiiiieennnen. 89
12.1 ENCRYPLioN oceiiiiiiciiiicicc e ce e seeesnessnnsnnes 89
Additional CoNCePLS . iuvieeriereeniierrrrrrereneieiereiernerneeeneeneenns 91
13. Creating FEAtUresS ..uvuiuieiiieiieieiiiiicceeeneeeneeeencnenes 93
14, FOrm Handling.ooveveiiieiiiiiiiiiieeec e ceceeeaeenes 95
14.1 Error Handling for Object Attributescccceeuuevvnnnnnnnene. 95

14.2 Error Handling for Freely-Definable Forms.................... 95

14.2.1 Definition of FormFieldscccccvvvverinieinnncinnnicrinnieennns 96

14.2.2 Using FOrms in Perl Code.cuvverurererrerrrenncrnncenncernncennes 97

14.2.3 Validation of Undefined Data TypesScccceerervueennnnnes 98

14.2.4 Error Handling Templatescceueeveueeivnenineniceennnnen. 99

15. Web SeIVICeS euieuiiniieienirereneteerenereierneereeenerencenes 101
15.1 ePages Web Services and FrameworK........c.ccceuvvennenee 101

15.2 Generate ePages Web Service....uvvueeeeerieriieeneennennnns 102

15.2.1 REGISTEI.cuiiuiireeirerreeeeeieneeeneeeeeeeeereneseacsnecsanenens 102

Page 4 ePages 5 - Design and Cartridge Development Guide

15.2.2 Authorization.....cceeeeeeiieniriic e eereeeee e 103

15.2.3 Implementationccceeieeieirnciiinnneiiniernirieneein 103

15.3 External Clients for ePages 15.3 Web Services........... 104

15.4 Implementing an ePages Web Service Client 106

16. HOOKS .cvueieeeieiieeceiectee et s ersereeraecaneseneeens 109
16.1 Providing @ HOOK....euueruerueeenernennnienrenneenneeneenneennennnes 109

16.2 Function Extensions Using HOOKS ...cceeeeveeenneenrennennnens 110

17. Import / Export of database contents 113
17.1 IMPOTt FIleS civueiiiiiiiiiiiiiiiiiiiiiiiinsiis i sceesesssanienens 113

17.2 XML IMPOIt cevuiiiiiiniiiiiiiiiiiiiiniiceereerenennseasenennees 114
17.2.1 Special Case : standards.pl....cccccceuueerennceennnceennnnnns 115

17.2.2 Special Case: HOOKSuveiivuierinensinnnicrnncisrnnnseenneenes 115

17.2.3 Special Case: FOrMS . .cuuueiiiiiueneerereneierreenncereennnnnns 115

17.3 XML EXPOIt cuiviiiiiiiiiiiiiiiiiiiiiiiiiiiiieniesiessessessessessessasses 116

18. Scheduler .t 119
18.1 Configuring Perl Script TasKs ..ceuceeeeerencernecrencrnnnrnnnnes 119

18.2 Creating New Perl Script Tasks....ccueeeeeereerencerencennnnns 120

18.3 Configuring UNIX Shell Script Tasks ..c.cceuueeeuneienennnnns 120

18.4 Starting and StOpPiNg ..cceevveiiiiiiiiiiccecrrceeceees 121

18.5 Scheduler Task OUtPUL....cceueerencreeieenereenerrneernerennnnns 122

19. Diagnostics Cartridge ...ccvevvvinrrerenieencrenrenrenereneenns 125
19.1 Installation..cccueeeeeeiiiniiiiiiiierce e e eee e 125

1 2 U L1 T~ R 125

DL T - PR 127
0 Y 1Y (=T PP 129
20.1 Selection StYleS ccuviviiiriieirieiieneieeeeirenereerneeenereneennnes 129
20.1.1 Creating Selection StyleS.....ccceeeriiruecerreeencererennnans 129

20.1.2 Creating an Image Setccvuecieiiieiiieiienicieecrecrnnnnens 131

20.1.3 Creating an Icon Set...ccvieuieeiieiieeriieeiieeeneieeeencennns 132

20.1.4 SUD-StYLES ccuunierceieeeeee et eeaa e 133
APPENAIXES . .uiieeiiueireeirrnrrnereenrenseraseranerensrensssrsssressnnssns 135
Appendix A: Performance TUNING....cccccveieeiencienirenenanens 137
21. General Proceduresccceeeeeeeeierenciecencencenncennnns 137
21.1 Page Caching.ccciiiiiiiiiiiiiiiiiiiiiiieeiieeneceeeeeeneceneennnns 137

21.2 Template ProceSSinNg ..ccccereeeeiriennirrennccrennirernncssnnnnsnens 137

21.3 ProcCess PrioritiesS ccceeeereeceeeeceenccrnernnerennerrnnsernesennnes 138

21.4 Reducing Response Times of the Initial Request........ 138

21.5 Debugging Information.......cccceeeiiiniiiiiiiniiiiieiinienns 138

21.6 Shop Settings ...ccvveiiiiiiiiiiiiiiiiiece e eeaeenaeees 139

21.7 System Monitoring with Spy.pl e.cceecreecirniienccinninnnnns 139

21.7.1 Installation...cccceerineiiienniiinniiiinneienieiniencin. 140

22. Procedures During Developmentccceevueeneenienennns 143
22.1 Template AnalysSiS...cccciruiriiririeniiiniiiineriiceeneeenneeennnnns 143

22.2 Partial Caching ..ccueeuiiiiiiiiiiiiiiciiiee e ceneeeeees 144

22.3 Using #LOCAL INStructionsccceecreceeciencreccrnninnennens 146

22.4 Separating Complex TLE BlOCKS ...cvvueeereenecernneneennnnnens 147
Appendix B: Developer Notes....coceveueeneeneenceneencenceneennen. 149

Table of Contents

ePages 5 - Design and Cartridge Development Guide

Page 5

Table of Contents

23. Adding E-Mail EVeNtS...cccvevvierienienieencrnnienrenerencenn 149
23.1 Creating @ MailTypPe.cucceceeerieirenireireirenrreneeeneeneeeneennnes 149
23.2 Creating a PageType and Assigning it to a Template... 149
23.3 Implementing the Function.....ccccccvveiiiiiiiiiiiiiniinnnnnee. 150
23.4 Registering an Action and Defining a Permission........ 150
24. Extension of Cross-Selling TYpesS ..ccevevverenrennrennnnn. 153
24.1 Define Table cuvueiieeieeiiiieeereer et rerneeeereeneernneeennnenens 153
24.2 Create ClasSSeS .uuuuiuniieeeeeeeieeeeeneeteeeeeeneeeeeneeeneennnns 153
24.3 Extending Product Attributescceueevueiiiniiiiiiiininnnnnne. 154
24.4 Creating Templates and PageTypesS..cccceeerrvenreenerennnnes 155
24.5 Register and Implement FUNctions....cccceueeeeerenninnnnes 156
25. Creating Shops via Web Services and Scripts........ 159
26. Patching Cartridges ...ceuieeeieneeiinieiiiiiiieieneenenennns 161
27. Integrate your own online Help...ccoveueeueeneencenienennns 165
27.1 Make the Help Page Available ...cccccevueceennrinninnncnnnnes 165
27.2 Assigning @ VIEWACLION .eeuveneeniiencreeeeneeeneeneeeeenneennns 165
27.3 Display Code in Templates ...ccceueeereerriinereienceeennnnnees 166
28. Dynamic MENUS....cccueiuiiieenerneeneeneeneeeeneencencencenennns 167
29. Shopping basket template and Lineltems............. 171
29.1 LineltemS cucieeiiniiiiiiniiiniiiiiiiiinerinernseessanssnssenssanssnsons 172
Appendix C: Usage Examples (UE)....cccecevueereeenncrerennnnnnns 177
30. UE 1: Integrating your own .cSs fil€..cveerieneaniennnnns 177
31. UE 2: Extending the Storefront Style.......cccceuuu.e.... 179
32. UE 3: Changes in the template ...cccoceveunrencennennnnnn. 181
33. UE 4: Customizing the Back Office Design
(Branding) .euueeeeeereeeeeeeeneererereiereneesneerseersneesseessnnns 185
34. UE 5: Deactivating the Design ToOl.....ccccevueeunnnnnnnn 187
35. UE 6: Design Changes using PageTypes.....cccceu..... 189
36. UE 7: New Batch Processing Commands
INThe MBO ...cuiiiiiiiieeeieececeeee et reerreeernceeanes 195
GlOSSANY turenienieniereeeieeeeereererenererenereranernsencensancsnsansanns 201
1T 1= PR 203

Page 6 ePages 5 - Design and Cartridge Development Guide

Contents of this Guide Introduction

1.Introduction

ePages 5 is a standardized technology platform which offers a high level of flexibility and extensibility,
thereby allowing you to quickly implement customer-specific customisations.

The many functions of the standard software provide the foundation for quick implementation of varied
business models with low operating costs.

The separation of creative design and functionality allows you to more easily modify each area and also to
reduce project length by working on each of these areas in parallel.

Cartridges are software components that are used to add new functions to the system and increase system
flexibility. These encapsulated functions enable communication via programming interfaces and can be
freely combined.

Developers should create functional extensions for the product as cartridges.

This guide describes the basics of customizing and extending ePages 5 in regards to design and cartridge
functionality. Because of the complexity of the system, it is not meant to replace developer training, but to
supplement it.

Visit our Web page at www.ePages.eu for further information about the seminars currently being offered.

1.1 Contents of this Guide

This guide describes the structures and concepts that are used in ePages 5. This guide uses examples and
explanations to show designers and developers how to customize the default ePages installation to fit
their needs.

Part I: Basic Principles, on page 9basic principles and concepts are explained that are important for
developers and designers.

Part Il: Cartridge Development on page 79 describes the basic method used to create cartridges.
Developers should be able with this information to develop functions to extend the system through
cartridges.

In part lll: Additional Conceptsfrom on page 91 describes further topics that are important to effectively
use the system.

In part IV: Design, on page 127 emphasis on customisation of design and layout. The method of designing
Web pages with the system is described. The creative part of designing Web pages is not discussed here.

Appendix A: Performance Tuning on page 137 provides information about improving the performance of
your installation.

Appendix B: Developer Notes on page 149includes information about specific problems and solutions that
occur fairly often.

In Appendix C: Usage Examples (UE), on page 177you can find examples which support the explanations
of the individual chapters. In the respective chapters, the example that fits is referenced. The source code
for every usage example is included in this guide. Using the source code, you will be able to see how the
examples work step-by-step. In order to guarantee the functionality of the cartridges, they must be
installed in the %EPAGES_CARTRIDGES%/Training directory. All cartridge examples are prepared so that
they can be copied into the correct location and installed in case one would like to test the functionality.

ePages 5 - Design and Cartridge Development Guide Page 7

http://www.epages.de/

Introduction Requirements

1.2 Requirements

This handbook is intended for developers and Web designers that would like to customize, extend, or
optimise existing ePages 5 installations.

It is assumed that designers have knowledge about HTML/XHTML, JavaScript, CSS, and XML. For cartridge
development, experience in PERL and SQL is also necessary.

A running ePages 5 default installation with the correct access rights on the storefront and back office, as
well as in the databases and the file system is assumed.

The knowledge contained in the Merchant User, Technical Administration, and Business Administration
guides is also valuable.

1.3 Typographic Conventions

The following fonts and formats are used to show special information:

nmake install Program code and instructions Multiple lines of code are framed.

perl import.pl [-help] |parameters in square brackets in program calls are optional.

texty Text in angled brackets that begins with lowercase letters is a placeholder
and will be substituted with real parameters.

All Hooks References to hyperlinks in the images of the ePages application. Links that
are shown like this are available in the application itself.

$hValues This formatting refers to special names and IDs, such as file names, path
names, field names, and entry fields.

#(context,)attributename |10 be used as a general syntax for typed instructions

| Note: Useful information that should be considered to work effectively are shown in a box like this.

| Caution: Important information that must be followed are shown in a box like this.

Page 8 ePages 5 - Design and Cartridge Development Guide

Part I:

Basic Principles

Inheritance Object Orientation

2.0bject Orientation

ePages 5 uses the advantages of object-oriented programming with PERL.
And for this, the following requirements and goals should be fulfilled:

- Consistent APl in order to work with objects and attributes
- Use of language-dependent attributes

- Attributes can be saved in separate tables

- Inheritance of attributes and methods

- Cartridges can add new attributes to existing classes

A class structure with the necessary inheritance mechanisms was developed for this. For each class,
attributes and methods are defined that can be used by the respective object.

The methods of a class are implemented in a PERL module, which is called a class package. The attributes
are also implemented in a PERL module, which is independent of a class package. In this way, attributes
for a class can be extended without changing the class package.

The assignment of attributes to classes is saved in the database. The database contents can be imported
from XML files of each cartridge such as Attributes*.xml. For more on this, see /mport / Export of database
contents, on page 113.

The Diagnostics cartridge provides an overview of the class structure. See Diagnostics Cartridge, on page
125. The structure is dynamically extendable and can differ in various databases.

Each object is an instance of its respective class. All objects are organized in a tree structure. The basis of
this structure is the System object. Each object can have an unlimited number of child objects.

Each object is described through three unique IDs:

Table 1: Object IDs
ID ’Description

Objectpath+Alias A unique alias related to the superior object. In this way, all objects are
uniquely identified through the object path, starting with the "System"
object. An example is

System/Shops/DemoShop/Users/admin.

When entering the object path, "System" can be left out. You could also
write the example this way: /Shops/DemoShop/Users/admin

Object ID Unique number in the database.

GUID Globally Unique IDentifier - an identifier that is unique through the
application. It can be used to identify object references in external systems.

All three values can be read with the Diagnostics cartridge.

2.1 Inheritance

Subclasses can be derived from every class. These subclasses inherit all attributes and methods from the
parent class and all classes from its parent classes as well.

Each class can only have one base class. Multiple inheritances are not possible. The base class of the
complete hierarchy is the BaseObject class. All other classes are subclasses. They only have exactly one
superior base class.

ePages 5 - Design and Cartridge Development Guide Page 11

http://pdomin.jena.epages.de/epages/Store.storefront/Diagnostics/?ViewAction=ViewObject&ObjectID=1000
http://pdomin.jena.epages.de/epages/Store.storefront/Diagnostics/?ViewAction=ViewObject&ObjectID=3428
http://pdomin.jena.epages.de/epages/Store.storefront/Diagnostics/?ViewAction=ViewObject&ObjectID=3429
http://pdomin.jena.epages.de/epages/Store.storefront/Diagnostics/?ViewAction=ViewObject&ObjectID=3430

Object Orientation Object API

Attributes and methods of a base class can be overwritten in subclasses. If a class must reference a
method of the base class, the following syntax must be used:

$sel F->SUPER: :Save($Serviet);

2.2 Object API

The object APl is the general interface for all objects. Use this API to create and delete objects and to set
and read attribute values. The API provides the following methods (among others):

Table 2: Methods of the object API

Method ‘Meaning ‘

insert Creates a new object and triggers the hook OB/_/nsert <ClassName>. For most objects,
the parameters parent and alias in the hash $AValues must be passed.

delete Deletes an object and triggers the hook OB/-Delete<ClassName»

load Initializes an existing object

id Returns the Object ID.

get Returns one or multiple attribute values

set Sets multiple attribute values and triggers the hooks OB/_BeforeUpdatesClassName»
and OBJ_AfterUpdate<ClassName>.

The package DE_EPAGES::Object::API::Object::Object provides a basic implementation of objects that are
stored in a relational database.

The package DE_EPAGES::Object::API::Object::Factory provides methods to access existing objects and
classes as well as for inserting and deleting objects. The most common functions are:

Table 3: Functions of the Factory module
Function Description

InsertObject Creates a new instance of an object
DeleteObject Deletes an object by reference of its Object ID
LoadObject Returns an object referenced by its ObjectID

LoadObjectByPath |Returns an object referenced by the object path
LoadRootObject |Returns the System object

LoadClassByAlias |Returns the corresponding class based upon the name

Code example 1 Shows the usage of the object API:

Page 12 ePages 5 - Design and Cartridge Development Guide

Object API Object Orientation

use DE_EPAGES::Object::APIl::Factory qw(InsertObject LoadObjectByPath);
use DE_EPAGES::Object::APIl::Language qw(GetPKeylLanguageByCode);

Load a new object with object path specification
my $Shop = LoadObjectByPath("/Shops/DemoShop”);

Load a child object
my $Folder = $Shop->child("Products”®);

Create a new objects of a given class
my $Product = InsertObject("Product®, {Parent => $Folder,Alias => "0815"});

Set attribute values for a new object
$Product->set({ Price => 1, Weight => 12.05});

Set language dependent attribute values
my $LanguagelD_en = GetPKeylLanguageByCode("en”);
my $LanguagelD_de = GetPKeylLanguageByCode(“de”);

$Product->set({
Name => “Example Product-®,
Description => "Example Description*®
3,

$LanguagelD_en

);

$Product->set({
Name => "Produktname-®,
Description => "Produktbeschreibung*”
}
$LanguagelD_de
)

Read out attribute values
my $IsVisible = $Product->get("IsVisible®);
my $hAttributesDE = $Product->get(["Name®, "Description®], $LanguagelD_de);

local $DE_EPAGES::Object::API::Language: :LANGUAGEID = $LanguagelD_en;
my $hAttributes = $Product->get(["Name®", "Description”, "IsVisible®]);

}

Delete object
$Product->delete;

Code example 1: Functions of the object API

ePages 5 - Design and Cartridge Development Guide Page 13

Attributes

3. Attributes

Attributes contain primarily the object types and properties. They are defined as objects. The base class is
Object. Because of this, they inherit all attributes of the base class. This means that attributes also have
attributes. These additional attributes are used to describe the properties of an attribute. The following are
used by default:

Table 4: Attributes to describe attribute properties
Function ‘Description ‘

Name Language-dependent name that is used for documentation purposes, for example

Description Language-dependent description that is used for documentation purposes, for
example

Type ID for the data type of the attribute;

Specifies the attribute of an object reference or a list of references. If a list of
references, the attribute name is the name of the object class of the values.
References the attribute of the type Object. They can contain references to objects of

any class.
Length Maximum length;
Only used for strings and language-dependent strings
Package Name of the PERL package that is used to access attribute values
IsArray Defines that attributes returns multiple values as an array
Default setting: 0
IsCachable The object can cache the attribute.
Default setting: 0, language-dependent attributes are not generally "cacheable”
IsExportable Should be exported with the object.

Default setting: 0

IsMandantory Definition as a mandatory field. This means that a value must exist;
Default setting: 0

IsObject 1 - The attribute value is an object reference or a list of objects. The mapping for the
object occurs via the object ID.

0— Attribute is a value

Default setting: 0

IsReadOnly Can only be read.

In ePages 5, these attribute types are used:
- Default attributes,

- lLanguage-dependent attributes,

- Attributes with pre-defined values

The following default attributes are supported:

Table 5: default attributes

Type ‘Comment ‘

Integer Integers with prefixes (32 Bit)

Float

Boolean 1=true, O=false

Money Fixed-length floating-point numbers
The Sybase data type moneyis defined as numeric(19,4). That means that
numbers up to 15 characters before the decimal point and 4 after the decimal
separator are saved.

ePages 5 - Design and Cartridge Development Guide Page 15

Attributes Language-dependent Attributes

Type ’Comment ‘

DateTime Date and time, based upon the PERL class DateTime
The Sybase data type datetime allows values from Jan 1, 1753 to December 31,
9999.

Date Based upon the PERL class DateTime. Only the date portion is used. The time
portion is set to 0:00:00.

Time Based upon the PERL class DateTime. Only the time portion is used. The date

portion is undefined.

String Unicode text of unlimited length

Short texts are saved in the database in fields of type NVARCHAR. If the texts are
longer than VARCHAR allows, the text is saved in fields of type TEXT in another
table.

File File name or URL

3.1 Language-dependent Attributes

Language-dependent attributes are attributes of the same name that can have various values in different
languages. Typical examples are product names or descriptions.

The basic implementation of language-dependent attributes can be found in the package
DE_EPAGES::Object::API::Attributes::LocalizedAttribute.

The following types are available:

Table 6: Types of language-dependent attributes
Type ‘Comment ‘

LocalizedString Analog type String

LocalizedFile Analog typeFile

During transfer of language-dependent content, you must always enter for which language the values are
transferred. There are two ways to do this:

1. By setting a global variable which determines the default language for further attribute functions, see
Code example 2,
2. Entering the language directly for each set()- or get() method for attributes. See Code example 3.

use DE_EPAGES::Object::APIl::Language qw(GetPKeylLanguageByCode);
use utfs;

set the language globally
local $DE_EPAGES::Object: :API::Language: :LANGUAGEID = GetPKeylLanguageByCode (

“de”);
$Product->set({ Name => "epages 5 fur Einzelhandler™ });
}

Code example 2: Setting the language globally

Page 16 ePages 5 - Design and Cartridge Development Guide

Attributes with Pre-defined Values Attributes

use DE_EPAGES::Object::APIl::Language qw(GetPKeylLanguage ByCode);
use utf8;

pass the language directly to the attribute function
my $LanguagelD = GetPKeylLanguageByCode("de”);

$Product->set({ Name => "epages 5 fur Einzelhandler™ }, $LanguagelD);

Code example 3: Defining the language for each function

3.2 Attributes with Pre-defined Values

For these attributes, an unlimited quantity of values can be defined. They are used to give the user the
possibility to select from a predefined list of values. Examples of this are selection boxes for product type
attributes or customer attributes.

These lists of values can be language-dependent or language-independent. There are two attribute types
that are based upon String:

- PreDefString
- PreDeflocalizedString

- PreDefMultistring
- PreDefMultiLocalizedString

3.3 Reference Attributes

In addition to simple values, attributes can also contain references to an object or a list of objects.

You can see how to pass these references to attributes in Code example 4.

use DE_EPAGES::Object::APIl::Factory gw(LoadObjectByPath);

find an object by path
my $Product = LoadObjectByPath("/Shops/DemoShop/Products/0815");

get reference attributes
my $Shop = $Product->get("Shop”);
my $aRelatedProducts = $Product->get("RelatedProducts”);

set reference attributes
$Product->set({ "Shop" => $Shop });
$Product->set({ "RelatedProducts” => [$Productl, $Product2] });

Code example 4: Passing references to attributes

3.4 Adding Attributes

If necessary, you can add new attributes to classes. There are two main ways to do this:

1. Assign new attributes to an existing class. In this case, all of these attributes are available to all
instances of this class.

2. They create a new subclass and assign new attributes to this class. This method is useful if new
attributes are not applicable to instances of an existing class.

Code example 5 shows how new attributes are created using the object API:

ePages 5 - Design and Cartridge Development Guide Page 17

Attributes Attribute API

use DE_EPAGES::API::Object: :Factory gw(LoadClassByAlias);

my $BaseClass = LoadClassByAlias("LineltemShipping”);
my $NewClass = $BaseClass->insertSubClass({ Alias => "LineltemUPS" });
$NewClass->insertAttribute({

Alias => "Distance”,

Type => "Float",

Package =>
"DE_EPAGES::Object: :API: :Attributes: :Defaul tAttribute”

}
):

Code example 5: Creating a new attribute

In the example, the new class LineltemUPS is derived from the class LineltemShipping. A new attribute
Distance of type Floatis created for the new class. All functions related to this attribute are implemented in
the package indicated.

Another way to create attributes is to define and then import the attributes in the Attributes* xm/ file. For
more on this, see /mport / Export of database contents, on page 113.

3.5 Attribute API

The default implementation of attributes based upon simple data types, language-dependent strings or
object references are sufficient for many applications.

In some cases, it can be necessary to create your own attribute access functions. Such cases are, for
example

- if attributes must be searched. The implementation of default attributes does not allow any indexing or
attribute values for search. In order to be able to search by attribute values, these should be saved in a
separate table, which is able to have an appropriate index.

- ifattribute values are going to be calculated based upon other attributes

- if the attribute values are stored in an existing table or in an external database

For situations like this, you must implement your own attribute APl in a Perl module. The following
functions must be contained:

Table 7: Functions of your own attribute API

Function ‘Comment
getAttribute Returns an individual attribute value
getAttributes Returns multiple attribute values in the form of a hash. Depending upon the

database, this function can be faster than getAttribute.
The field $aNames only contains the ID (alias) of the attributes that are
implemented in this package.

setAttribute Sets a single attribute

setAttributes Sets multiple attributes at once. Depending upon the database, this function can
be faster than setAttribute. The hash $hValues only contains the attributes that
are implemented in this package.

DeleteObject This method is called to delete an object. The field $aNames contains the names
of all attributes that can be used with the object that is to be deleted and that are
implemented in this package.

deleteAttribute This method is called to delete one of the attributes, for example if a cartridge is
being removed.

Page 18 ePages 5 - Design and Cartridge Development Guide

Attribute API Attributes

Function ’Comment

getAllAttributes Returns a hash of all attribute values. Language-dependent attributes are
returned as a hash.

defaultAttributes Returns a hash with default attributes. These are used when creating a new
object if the values are not passed through InsertObject().

Setting an attribute value to undefleads to deleting the respective value from the database.
Attributes that return object references only function with the object ID.

The module DE_EPAGES::Object::API::BaseAttribute provides a basic implementation so that you do not
have to implement all the functions yourself.

ePages 5 - Design and Cartridge Development Guide Page 19

Registering Actions for Objects Rights and Roles

4.Rights and Roles

In order for a user to perform actions within the system, he must first be assigned permissions. These
permissions are assigned for specific objects and apply to all child objects.

A relation must therefore be created between rights, users, actions, and objects. Users are can be assigned
permissions to perform specific actions to specific objects.

Theoretically, a permission for every action could be assigned to every user for every object. However,
because of the large quantity of objects, actions, and users, this would be too time-consuming. Therefore,
to simplify things, roles and groups were created and inheritance is used.

A Roleis a collection of many related actions. These actions are often performed together or somehow
related. During assignment of rights, roles should be used instead of individual actions.

Multiple users can be placed into a Group. Use this method to grant various users the same rights. Assign
rights to the group and then assign the users to the group.

To avoid having to assign rights to many individual objects, use /nheritance. Rights can be inherited by a
parent object. Rights are not physically copied. Instead, an inheritance relationship is created. Because of
this, changes to rights of the parent object are applied to all child objects as well. The inheritance
relationship is created immediately during creation of an object.

Through various possibilities to group users, actions, and objects, it is possible that user can have multiple
rights for the same action on a single object. It is even possible that an action can be simultaneously
allowed and forbidden. To resolve conflicts like this, the following rules apply to rights management:

- anything that is not explicitly allowed is forbidden
- any action which is both allowed and forbidden for a user will be forbidden

To provide actions for users, you should perform the following steps:
1. Implement and register an action

2. Assign the action to a role
3. Assign the role to a user or a group

4.1 Registering Actions for Objects

Actions are defined in the Actions*.xmlfile and registered in the database during import. For each
cartridge, multiple files of this type can exist. They must be in the cartridge directory at /Database/XML.

How an action is defined is shown in Code example 6.

ePages 5 - Design and Cartridge Development Guide Page 21

Rights and Roles Assigning Actions to Roles

<?xml version="1.0" encoding="UTF-8"7?>

<epages>

<Class reference="1" Path="/Classes/Shop'>
<Object Alias="Actions'>

<Action Alias="MBO-ViewKelkooConfigs"
Package="DE_EPAGES: :Kelkoo: :Ul : z:KelkooConfig"” FunctionName="View"
delete="1">
<AttributeValue Name="HelpFileTopic"
Value="MBO/index.htm?single=true&context=MBO_Help&
topic=MBO_Marketing_Kelkoo™" />
<Attributevalue Name="Name'" Language="'de' Value="Kelkoo - Allgemein" />
<AttributevValue Name="Name"™ Language="‘en'" Value="Kelkoo - General" />
</Action>

<Action Alias="NewKelkooConfig"
Package=""DE_EPAGES: :Kelkoo: :Ul : z:KelkooConfig"
delete=""1"
/>
</Object>
</Class>
</epages>

Code example 6: Defining an action

First select to which class the action will apply. The objecttag with the alias Actions represents a folder
where actions are entered.

Each action is individually defined. Aliasis used to assign the ID. This name is also used in the template. In
the package you can enter where the PERL function for the action is implemented. The parameter
FunctionName contains the name of the function in the PERL module that is called if A/iasand PERL
function names are different. If both names are the same, the parameter FunctionName can be omitted.
See the second action defined in the example.

Attributes can be assigned for display actions (ViewActions). HelpFileTopic refers to the corresponding
online Help for this action. Using Mameyou can assign language-dependent names to actions. This name
is displayed in the MBO in the Aistory.

4.2 Assigning Actions to Roles

Roles and permissions are defined in the file Permissions* xm/land are registered in the database during
import. For each cartridge, multiple files of this type can exist. They must be in the cartridge directory at
/Database/XML.

By default, four roles are defined: Merchant, Customer, WebService, User. These roles are defined for
various objects. Because these roles are sufficient for the application, you will usually assign permissions
to the existing roles, as shown in Code example 7.

<?xml version="1.0" encoding="UTF-8"7?>
<epages>
<Role reference="1" Path="/Classes/Shop/Roles/Merchant'>
<RoleAction Class="Shop" Action="MBO-ViewKelkooConfigs" delete="1" />
<RoleAction Class="Shop" Action="NewKelkooConfig" delete="1" />

</Role>
</epages>

Code example 7: Assigning an Action to a Role

You reference the role that you would like to assign to the action. To do so, enter the object path for the
role.

Page 22 ePages 5 - Design and Cartridge Development Guide

Assigning Rights Rights and Roles

For the action itself, enter the name of the action and the classes that are assigned to the action. Compare
Code example 6.

In case you want to create a new role, use Code example 8as an example.

<?xml version="1.0" encoding="UTF-8"7?>
<epages>

<Class reference="1" Path="/Classes/Shop">
<Object Alias="Roles">
<Role Alias="Merchant" delete="1">
<RoleAction Class="0Object" Action="Delete" />
<RoleAction Class="Object" Action="DeleteFile" />

<RoleAction Class="0Object" Action="Setlnvisible" />

<RoleAction Class="Shop" Action="AddCurrency" />
<RoleAction Class="Shop" Action="AddLanguage" />

<RoleAction Class="User"™ Action="MBO-ViewUserSettings" />
<RoleAction Class="User" Action="SaveUserSettings" />
</Role>
<Role Alias="Customer™ delete="1">
<RoleAction Class="Shop"™ Action="View" />
</Role>
<Role Alias="WebService" delete="1" />
</Object>

</Class>

</epages>

Code example 8: Creating roles

Refer to the class that you would like to create for the role. You can define the role with an appropriate alias
in the Roles object folder. In the example above, the role System/Classes/Shop/Roles/Merchantis
defined.

Within a role, all actions are listed individually with the class that is registered for this action.

To create roles, also use the file Permissions*.xml.

4.3 Assigning Rights

Groups and users must have the permissions required in order to perform the defined actions. This means
that they must be assigned the correct rights.

Assignment of rights to a group is shown in Code example 9. They use the file Permissions* xml.

ePages 5 - Design and Cartridge Development Guide Page 23

http://hahnert.jena.epages.de/epages/Store.diagnostics/en_GB/?ViewAction=ViewObject&ObjectID=1
http://hahnert.jena.epages.de/epages/Store.diagnostics/en_GB/?ViewAction=ViewObject&ObjectID=2
http://hahnert.jena.epages.de/epages/Store.diagnostics/en_GB/?ViewAction=ViewObject&ObjectID=554
http://hahnert.jena.epages.de/epages/Store.diagnostics/en_GB/?ViewAction=ViewObject&ObjectID=656
http://hahnert.jena.epages.de/epages/Store.diagnostics/en_GB/?ViewAction=ViewObject&ObjectID=657

Rights and Roles Assigning Rights

<?xml version="1.0" encoding="UTF-8"7?>
<epages>

<I-- permissions -->
<Group Alias="Everyone'>
<Object reference="1" Path="/"">
<Permission Class="Shop"™ Role="Customer'™ Allow="1" />
</Object>
</Group>

</epages>

Code example 9: Assigning rights to a group
If a new group is created, assign an alias. Otherwise, refer to an existing group.

In Groupyou can define which users receive which rights. In Object, you can determine to which object the
permissions apply.

In Permissionyou define which roles the members of the group are assigned to. The exact role name
consist of the entries in Class and the role-alias.

In Code example 9this means: Members of the group Everyone are allowed to perform all actions of the
role Customerof the class Shop on the System object. The object System is represented by /in Path.

The right is explicitly allowed via the attribute A/low=1. As long as Allowis not set, the action is implicitly
forbidden.

If Allow=0, you can forbid an action for a specific user in case this action was allowed in another role.
Rights can also be assigned for individual users. This generally happens when creating a new user. This
means that if a customer registers in the shop, a user with the Userrole is created for him. If a user is

created in the user management the back office management, this user receives the role Merchant.

Instructions for creating a user using an XML file and assigning rights is shown in Code example 10.

<?xml version="1_.0" encoding="UTF-8"7?>
<epages>
<Object Alias="Users" Position="120">

<User Alias="admin Password="zruzfz"” Name='"Shop-Administrator™
DeleteConfirmation="1" delete="1" >
<Permission Class="User"™ Role="User" Allow="1" />
<Object reference="1" Path="__/_.">
<Permission Class="Shop" Role="Merchant"™ Allow="1" />
<Permission Class="Shop" Role="Customer" Allow="1" />
<Permission Class="Shop" Role="WebService™ Allow="1" />
</Object>
</User>

</Object>
</epages>

Code example 10: Creating a user with rights assignment

A user is created with an alias, a password and a user name in the Users folder. He receives the rights for
the Userrole that are defined for the Userclass. This role allows him, for example, to change his password
and other personal data.

In addition, you can assign additional permissions for roles to other objects. In our example, the user
Adminreceives the rights for all actions in the roles Merchant, Customerand WebServicethat are defined
for the shop object.

Page 24 ePages 5 - Design and Cartridge Development Guide

Difference Between User and Customer

5.Difference Between Userand Customer

ePages 5 contains a user-customer concept that allows various business modules to be created with a
single solution. Three primary scenarios were created: The shop-scenario, the marketplace scenario, and
the procurement scenario.

The foundation of the concept is the differentiation between users and customers that both represent a
different view.

A "user" is a person who performs real actions within the application, for example registering or creating
orders.

A customer is a business partner for whom the actions are performed, comparable to a company for which
the orders are made. He "carries" the business relationship, so to speak.

The necessity of separating these both is easy to see when one views three scenarios:

Shop scenario

Shop A

Customer
1A

User 1

Shop B

Customer
2B

User 2

Figure 1: Shop scenario

Itis characteristic for this scenario that a 1:1 relationship exists between the user and the customer. A
customer is created by the user who is determined via a sign-in. The user creates orders for this single
customer, edits account and shipping information, and so on.

Because of the 1:1 relationship, no division between the user and the customer exists in this scenario. This
means that only one role can be assigned all information.

ePages 5 - Design and Cartridge Development Guide Page 25

Difference Between User and Customer

Marketplace scenario

User 1

Shop A

Customer
1A

Customer
2A

Shop B

Customer
1B

Customer
2B

User 2

Figure 2: Marketplace scenario

The marketplace scenario is notable for the fact that a user with one set of sign-in data has access to
multiple shops. This means that multiple customers are assigned to this user. Therefore, the relationship
is 1:n. With this scenario, a requirement is that the data are divided into user data and customer data. The
specific data for "his" shop are saved for each customer, such as customer group or bulk discounts. The
data are created for the user that are necessary to be able to access all shops in the marketplace with his

sign-in data.

Procurement Scenario

User 1

User 2

[y

User 3

Shop A

User 4

Customer
A

[

Figure 3: procurement scenario

In the procurement scenario, the customer (company) is represented by multiple users (employees). These
users all have their own user names. In this case you can, according to your permissions, perform various

Page 26

ePages 5 - Design and Cartridge Development Guide

Difference Between User and Customer

actions and edit various data. In this case, we have an n:1 relationship. Here it is also necessary to
differentiate between user-specific data that are saved for every user and shop-specific data that are saved
by customer.

For this reason it is clear that users and customers each have their own specific data pool that must be
created and edited. The structure of the data can be seen using the Diagnostics Cartridge. Knowledge of
these relations is important if you, for example, want to extend the data model and must decide whether
data are assigned to the user or the customer.

Another example is for the connection of external systems that create and edit customer data in the
system. It is also important for the developer to know for this which data belong to the user and which
belong the customer.

ePages 5 - Design and Cartridge Development Guide Page 27

ViewActions URL Actions

6.URL Actions

In ePages 5, two types of actions are defined: ViewActionand ChangeAction. ViewActions are used to
create various views of objects. Through ChangeActions, object data are changed.

A request to the application can activate one ViewAction and start multiple ChangeActions. The
ChangeActions are always performed before the ViewActions.

Modification and display of an object is defined by query parameters in the URL or through form
parameters of a POST request.

A typical request could be
http://vm4l/epages/Store_admin/de_DE/?ViewAction=MBO-ViewGeneral&ObjectlD=4639
The actions are assigned to specific permissions. The user must have the corresponding permissions in
order to perform these actions. The permissions must exist for all actions that are performed by the
request. Otherwise, the request cannot be completely answered. For more about “Permissions”, see also

Rights and Roles, on page 21.

Actions are saved in XML files in the /Database/XML subdirectory of a cartridge. Actions are registered in
the database via XML import.

The file names must begin with Actions or PageTypes, for example ActionsShop.xm/or PageTypesMBO.xml.
The Perl modules that belong to the action are implemented in the /U/directory of a cartridge. Examples for
this can be found in the corresponding directories of a default installation.

For more information, see Rights and Roles, on page 21 and Pagelype Concept, on page 39.

6.1 ViewActions

The ViewAction determines which view of an object is displayed. The ViewAction parameter of the request,
specifies which specific view should be used. The corresponding object is specified through entering the
ObjectID or the object path.

The ViewAction is linked to a specific PageType that is necessary for the requested view.

A ViewAction can optionally perform a number of PERL functions that prepare additional TLE variables for
display.

The default ViewAction Viewis used if no parameters are specified for the ViewAction. If no object is
specified, the System object is shown

6.2 ChangeActions

Use ChangeActions to read or edit object data, perform calculations, and so on.

The ChangeActions that will be performed are either saved as form parameters or defined as parameters in
the URL.

Each ChangeAction starts various PERL functions that modify the specified object or its data. The object
must be specified by the ObjectID or the object path.

If you would like to edit another object than the one shown, this must be addressed using the parameter
ChangeObjectlD.

ePages 5 - Design and Cartridge Development Guide Page 29

Technology Templates

7.Templates

Displaying an object in the browser is performed using a ViewAction. How this object is displayed is
defined in a template. This template is connected to a ViewAction by a PageType. For more on this, see
PageType Concept, on page 39.

Templates are the foundation for rendering in a browser. They are documents that contain information
about the format and structure of the contents and data. XHTML, JavaScript, and ePages-specific language
extensions are used in the templates.

These language extensions are 7L£s (Template Language Extensions) and the Language Tags.

TLE variables are placeholders for dynamic information from the database. When a page is requested,
these placeholders are replaced by current database content.

TLE statements are ePages-specific commands used to display Web pages depending on the content.
These statements are used to query and evaluate dynamic data and to generate a Web page depending on
the results of these statements.

When a template is being created, TLE statements serve as placeholders for language-specific expressions.
These statements are dynamically replaced with the correct content at runtime depending on the current
language.

7.1 Technology

Templates are built modularly. The template for an HTML page consists of multiple templates that each
describe a specific portion of the page. These templates can then be used for various pages. This
reusability minimises development and maintenance. For more on this, see Display Levels, on page 41.

Using TLEs and language tags gives you the option of requesting any piece of data in the database and
even displaying language-dependent information in real time.

This means that you can use a template to generate and display different HTML pages with variable
content. This results in a significant reduction in work for the Web designer.

In order to create Web pages, you must know how to work with HTML/XHTML and XML. Experience with
JavaScript is not necessary, but is helpful. Working effectively with TLE language elements and multilingual
pages is described in chapters 7LE, on page 61, and Multiple Languages—Language Tags, on page 49

7.2 Template Process

When a request is made, different Web pages are generated depending on the contents of the database
and the language requested. Due to the complexity of this process, it is impossible to create all the Web
pages that could be required beforehand. Pages must be dynamically generated with current data at
runtime.

One disadvantage of generating pages dynamically is the long response time in comparison to the time
necessary to display static pages. A balance must be found between performance and the accuracy of
current information.

For this reason, the template process includes several areas where the developer or user can decide
whether brand new pages should be generated with current information or whether new pages can be put
together in whole or in part from pre-existing HTML files.

ePages 5 - Design and Cartridge Development Guide Page 31

Templates Template Process

A request triggers the following process. See Ffigure 4:

Browser

Optimization
: n ePages 5
ite exista? 1
Timestamp .
y check Changes in !
TMLXML_Files2
Template

n

TLE -Compiler

(Language-Tag-
and TLE processing)
Dictionary.xml

h 2

Compilation

TLE-Processor

part. Chaching

] H
¥ API
Database External systems

HTML - ||
Content]

¥
Website

Browser

Figure 4: the template process, simplified representation

After a request has been made, it is possible to check whether the Web page requested is already available
as a static HTML page. This check can be activated on the merchant's administration page, see
Optimisation in the Merchant User Guide.

This is the fastest option for replying to the request. However, none of the page information will have been
updated.

Otherwise, the actual template process begins.

All the templates that have already been requested once are stored on the hard drive along with a time
stamp as precompiled versions (compiled files). These compiled files can be considered a type of cache
that reduces access times significantly.

When a request is received, the system first checks whether the template requested already exists in a
precompiled state. If it is present, the time stamp of the cached version is compared with the original HTML
template and the XML language files. If the time stamp on the HTML file and on the XML files are not newer
than the one on the compiled file, the system uses the precompiled version and sends it to the TLE
processor.

If the time stamp on the precompiled page is older than the one on the template or on the language files,
the compiled filed is therefore outdated and is deleted. After this, the template translation process is
restarted. The same thing happens when no compiled file for this template exists, that is, if the template
has never been translated.

Page 32 ePages 5 - Design and Cartridge Development Guide

Template Process Templates

The function for checking the time stamp can be deactivated in order to increase performance, see Page
Caching, on page 137.

When a compiled file is generated, the first step is to check the template for language tags and to insert
language-specific contents, see Multiple Languages—Language Tags, on page 49. After this, the template
is processed and saved as a compiled file to be further processed by the TLE compiler. This file is saved in
the file system and overwrites any existing "outdated" version.

The following figure shows an example of the individual parts of this process:

In Figure 5, you see the code section of a template. In addition to the HTML formatting, the TLEs (beginning
with a #) and language tags (enclosed in {}) stand out.

#IF(#shop. FeatureMaxvalue. EnhancedCustomer AcCount)
#IF((#Class.Alias NE "Customerorder” OR NOT #Session.User.ISAnonymous) AND #INPUT.viewaction NE "viewrRegistration™)
«div class="ContextBox >
<div class="LoginBox">
#IF(#session.user AND NOT #session.user.IsAnonymous)
<div class="ContextBoxHead">
<hl=#session.user. Name</hl>
</div>
<div class="cContextBoxBody">
<g c}ass="a\ctw‘ on" href="70bjectID=#Session.User. ID& ViewAction=viewyAccount">{MyAccount }

<div class="ContextBoxHead">
<h1>{CustomerLogin}</h1>
</dive>
<form action="#FUNCTION("BASEURL", #System, 1)#IF(#Pager)#Pager.URLPage#ELSE7ObjectPath=#Pathlurl]#IF(#INPUT.ViewAction NE "View" AND
#IN?U‘{I".\H ewAction NE "ViewLostPasswD")& viewAction=#INPUT.ViewAction#ENDIF#ENDIF#IF (#INPUT.ErrorAction)& ErrorAction=#INPUT. ErrorAction#ENDIF"
method="post">

#IF(#FOrmError AND #FOFmMErrors.Form.Login. Errorcount)
<div class="ContextBoxBody">
<div class="Dialogerror’>
#IF (#FOrmErrors. Reason. LOGIN_NOT_FOUND)
{LoginNotFound}#ELSIF (#FOrmErrors. Reason. LOGIN_INACTIVE)
{LoginInactivel#ELSIF (#FOrmErrors. Reason. PASSWORD_MISMATCH)
{Passwordmismatch}#ELSE
{EnterLoginandPasswor d}#ENDIF
</div>
</divs>
#ENDIF
<div class="ContextBoxBody'>
<input type="hidden" name="Changeaction"” value="5avelLoginForm" />
<input_type="hidden" name="Registrationobjectip” value="#shop.ID"
<div class="Entry #IF(#FormError_Login AND #FormErrors.Form.Login.ErrorCount)DialogError#ENDIF >
<div class="InputLabelling">{uUserName}</div=
<div class="InputField">#WITH_ERROR{(#Formerror}
<input class="Login" name="Login" value="#IF(#Login)#Login¥ENDIF" />#ENDWITH_ERROR
</div>
</divs
<div class="Entry #IF(#FormeError_Password AND #FOrmeErrors.Form.Login. ErrorCount)bialogeError#ENDIF >
<div class="InputLabelling">{Password}</div>
<div class="InputField">
<input class="Login" name="Password” type="password” value="" />
</divs>
</divs
</divs
<div class="ContextBoxBody">
<input class="action" type="submit" value="{Login}" />

</div>
<div class="ContextBoxBody">
#BLOCK("MENU", "LoginBoxLinks")
#INCLUDE (#Template)
#ENDBLOCK
</div>

</forms=
#ENDIF
</div>
</divs
#ENDIF
#ENDIF

Figure 5: code example for the template

This is how a compiled file is structured. You can view a section of it in Figure 6. The language-specific data
are inserted and the TLE variables are converted to PERL function calls.

ePages 5 - Design and Cartridge Development Guide Page 33

Templates Template Process

#1ine 9 "C:\epages'cCartridges/DE_| EPAGES,"DESWgn/Temmates,"sr,"NavE'lements/SF Lugwanx html"
spush @Resu'lt %Pr‘ocessor >replaceTLE('Session.user.ID’ , '#session.user.ID)
#line 9 "C: \epages\cartr'ldges/DE EPAGES/Demgn/Temp'Iates/SF/NavE'IementsfSF LoginBox. htm1™
;push @Re5u1t & ViewAction=viewMyaAccount">Mein Konto\n
\n <a dass =\"action\" href=\"70bjectPath="
#line 11 "c: \epagesgcartr‘ldges/DE EPAGES/Des‘lgn/TempTates/SF/NavE'Iements,fSF Loginsox. html”
;push @Result, S$Processor->replaceTLE(shop.pPath’, "url’, ‘'#shop.path[url]’)
Eline 11 "c:\epages\cartr-ldges/DE EPAGES/Des-lgn/TempTates/SF/NavE'Iements/srr Loginsox. html"

qush @Resu'lt, & ViewAction=view& ChangeAction=Logout,">Abmelden</a=\n </d'|v>\n

"C: \epagesgcartr‘ldges,ﬂ'DE EPAGES/DES‘lgn/’TEmpTates/SF/NavE'Iements/SF LoginBox. htm]"

1lelse {push @result, "\n <div class=\"contextsoxHead" ">\n <hl=kunden-Logi r|</h].>\r1 </div=hn <form action="""
#'I'me 17 "C: \epages\cartr'ldges/DE EPAGES;’D&S'lgn/Temp'\atesfSF/NavE'Iements,fSF LoginBox. html"

ush @Re5u1t $Processor->callBlock("BASEURL™, sub { my @Result = ();push @Result, $Pru(essmr >tle('system”, ')
Eline 17 "c: \epages\cartr-ldges/DE EPAGES/Des-lgn/TempTates/SF/NavE1ements/5F.LogmBox.htm‘I
:push @Resu'lt 1
#line 17 C:\epages\cartr‘ldges,"DE EPAGES/Design/Templates/SF/NavElements/5F. LoginBox. html"
: return \@Resu'\t 1, undef)
#line 17 "C: \epages\cartr'ldges/DE EPAGES/Design/Templates/sF/NavElements/SF. LoginBox. html"”
;if(3pProcessor->tle(’Pager
#1ine 17 "C: \epages\cartr-ldges/DE EPAGES/Des-lgn/TempTates/SF/NavE1ements/5F.Log-insox.htm'l "
) {push @Result, $Processor->replaceTLE(Pager.URLPage’, ', '#Pager.URLPage’')
#line 17 "C: \epages\cartmdges,"DE EPAGES/Des‘lgn/'Temp ates/SF/NavElements/5F. LoginBox. html"”
:lelse {push @result, "7objectPath="
#line 17 "cC: \epages\cartmdges,"DE EPAGES/DES‘lgn/’TEmpTates/SF/NavE1ements/sr.Lug‘inaux.htrﬂ "

qush @Resu'lt $Processor->replaceTLE(Path url #Path[ur

ine 17 "C: \epages\cartr'ldges/DE EPAGES;’Des‘lgn/Temp'\ates/SFfNavE'Iements/SF.Log'inBox.htm'I "
;it(SProcessor—>tle(INPUT. ViewAction’
#'I-me i7" 'C:\epages‘\cartridges /DE_EPAGES/Design/Templates/sF/Navelements/sF. Loginsox. html"”

ne "view"
#1ine 17 "C:‘epages‘\Cartridges/DE_EPAGES/Design/Templates/SF/NavElements,/SF.LoginBox. html"

#1ine 17 "C: \epages\cartr'l dges/DE_I EPAGES;’D&S'l gn/Templates/SF/NavElements,/5F. LoginBox. html"”
P2 $Pru(essmr >tle("INPUT. Viewaction

#14 ne 17 " \epages\cartr-l dges /DE_ EPAGES/DES‘I gn/Templates,/sF/Nave]lements,/sF. Loginsox. html"”
ne "ViewLostPasswWD’

#1ine 17 "C:‘epages‘\Cartridges/DE_EPAGES/Design/Templates/SF/NavElements,/SF.LoginBox. html"

#1ine 17 "C:‘\epages\Cartridges/DE_EPAGES/Design/Templates/sF/NavElements/SF.LoginBox. html"”

#1ine 17 "C: \epages\cartr-ldges/DE EPAGES/Des-lgn/TempTates/SF/NavE1ements/5F.Log-insox.htm'l "
) {push @Result, "&VviewAction="

#1ine 17 "C: \epages\cartr-ldges/DE EPAGES/Des-lgn/TempTates/SF/NavE1ements/5F.LogmBox.htm‘I "
qush @Resu'lt SProcessor->replaceTLE(INPUT.ViewAction’, ', "#INPUT.ViewAction')

#line 17 "C: \epages\cartmdges,"DE EPAGES/DES‘lgn/’TEmpTates/SF/NavE'Iements/SF LoginBox. htm1"
;}}wf(sprocessor =tle(INPUT.Erroraction

#1ine 17 "C: \epages\cartr'ldges/DE EPAGES;’D&S'lgn/Temp'\atesfSF/NavE'Iements,fSF LoginBox. html"
) {push @Result, "&Erroraction='

#1ine 17 "C: \epages\cartr-ldges/DE EPAGES/Des-lgn/TempTates/SF/NavE'Iements/srr LogmBox.htm‘I "

qush @Resu'lt SProcessor->replaceTLE(INPUT.ErrorAction” . "#INPUT.ErrorAction’)
ine 17 "C: \epages\cartr‘ld es /DE_| EPAGES/DES‘lgn/’TEmpTates/SF/NavE'Iements/SF LoginBox. html"
: Tpush @Resu'\t method= g ‘posth,

#1ine 18 "C: \epages\cartr'ldges/DE EPAGES;’D&S'lgn/Temp'\atesfSF/NavE'Iements,fSF LoginBox. html"
;it(SProcessor—>tle('FormError’

#1ine 18 "C: \epages\cartr-ldges/DE EPAGES/Des-lgn/TempTates/SF/NavE'Iements/srr Loginsox. html"
F:2 $Pr‘0cessor >tle('FormErrors.Form.Login. ErrorCount”’, ')

#1ine 18 "C:‘epages‘Cartridges /DE_I EPAGES/DES‘lgn/’TEmpTates/SF/NavE'Iements/SF LoginBox. html"”

#1ine 18 "C: \epages\cartr'ldges/DE EPAGES;’Des‘lgn/Temp'\ates/SFfNavE'Iements/SF.Lo inBox. htm1™

) {push @ResLﬂt iv class=""ContextBoxBody\ ">\n <div class=\"DialogError’">\n
#1ine 21 "C: \epages\cartr'ldges/DE EPAGES;’D&S'lgn/Temp{atesfSF/NavE'lemer‘lts,fSF LoginBox. html"
;it(SProcessor—>tle(' FormErrors. Reason. LOGIN_NOT_FOUND

#1ine 21 "C:\epages‘cCartridges/De_| EPAGES/Des-lgn/TempTates/SF/NavE'Iements/srr Loginsox. html”

) {push @Resu'lt, "\n Ein Benutzer mit den e'm?egebenen Benutzernamen ist im shop mcht vorhanden.
#line 22 "C: \epages\cartmdges,"DE EPAGES/Design/Temp ates/SF/NavE1ements/SF LoginBox. html"
,}eTs-lf(SProcessor >tle("FoOrmerrors.Reason. LOGIN_INACTIVE)

#1ine 22 "C:‘\epages\Cartridges/DE_ EPAGES;’D&S'lgn/Temp'\atesfSF/NavE'Iements,fSF LoginBox. html"

) {push @ResLﬂt "\n {LoginInActive}"”

#1ine 23 "C: \epages\cartr-ldges/DE EPAGES/Des-lgn/TempTates/SF/NavE'Iements/srr Loginsox. html"
,}e'\s1f($Processor >tle("Formerrors.Reason. PASSWORD_MISMATCH'

#line 23 "C: \epages\cartmdges,"DE EPAGES/Desi n,"TempTates/SF/Navﬂements/sr LoginBox. htrﬂ "

) {push @Resu'lt n Das Kennwort fir gen em?egebenen Benutzernamen ist falsch.

#1ine 24 "C: \epages\cartr'ldges/DE EPAGES/Design/Temp

ates/SF/NavElements,/5F. LoginBox. html"”

Figure 6: compiled file for the template in Figure 5

Later the compiled file is processed by the TLE processor. The TLE processor basically serves as the switch
board between the compiled file and the application server.

At this point, there is another opportunity for reducing the response times for the request. Partial caching
can be activated for defined template sections, see Partial Caching, on page 144. This lets you decide
whether the HTML code generated in previous operations will be reused for individual sections or whether
to generate an entirely new version with current information.

Without partial caching, the compiled file is processed by the TLE processor, the database queries and
actions are executed, all the necessary information is replaced, and the page is coded in HTML.

After all these parts, which are known as includes, have been processed, the resulting HTML page is sent
to the browser.

The compiled files are text files with a .cfmp/extension and contains PERL code. They are stored in the
subdirectory under

%EPAGES_SHARED%/Static/Store/Templates/DE_EPAGES

with the name of the original cartridge used. In this example, Sforeis the current database being used.

Caution: Do not edit the compiled text files (ctmpl files). This will destroy the integrity between the
template and the compiled file. Make your changes in the template and automatically regenerate the
compiled file!

Page 34 ePages 5 - Design and Cartridge Development Guide

Basic Web Page Structure

7.3 Basic Web Page Structure

Templates

ePages provides a large number of predefined, fully functional templates for your shop. You can use these

templates as the basis of new templates or customise the templates yourself.

All HTML pages generated from these templates share a similar basic structure. The Body section for
storefront page layout contains the sections seen in Figure /7.

Header

Head area / Top

Left area

Content area

Right area

Footer area [/ Bottom

Footer

Figure 7: page structure in the body section of HTML pages

While the "edge areas" contain mainly navigation and function elements, the working area displays the

results of the various functions.

The structure is defined by PageTypes that control how the HTML pages are put together using the

individual include templates at runtime.

7.4 Overlaying Templates

ePages 5 - Design and Cartridge Development Guide

Page 35

Templates Template Debugging

Often there is the need to customise templates to fit your personal requirements. However, errors that
result from this in the original templates can cause problems for the whole system. If you change the
original files, you will also not be able to upgrade your ePages application properly. If you have made
customized changes in any of the original templates in the default cartridges, an upgrade will overwrite
these changes and they will be lost.

Caution: If you want your system to remain updateable, do not make any changes to the original files in
the original directories!

There is a mechanism in ePages for this that helps you to make changes without editing the original
templates. That is template overlaying. The basic proposition is to provide various templates of the same
name and define their usage order.

In the ePages system, there are specialised overlaying directories. You can copy the original files to these
and edit them. The original files remain unchanged in their original directories. The editing sequence is
defined in the system in such a way that first the system makes an attempt to find the files needed in the
"overlay directory". If the files are there, they are used. If they are not there, the system accesses the
original directories.

The directory in which you can save your modified templates is located at

%EPAGES_STORES%/Store/Templates/DE_EPAGES

Here, you will find, as with the installation directory, a directory for every default cartridge and in them the
corresponding template directories for the store front and the back office.

If you want to change a default template, copy it from the original directory into the directory with the same
name at the location mentioned previously. Then you can make all your changes without having to worry
that the system will be influenced. If your modified template still has errors or is not yet finished, simply
rename it or delete it from the directory to restore the original conditions.

This procedure is convenient if you are for making changes to your local installation that you do not want to
pass on.

If these changes are part of a packet to be delivered, you should collect these changes in their own
cartridge. You can also use the overlaying technique when you put your modified files in the correct
directories in your cartridge. Read about this in chapter Cartridges, on page 81 in the explanations about
the subdirectory DATA/Private.

An example for using template overlaying can be found in Appendix C: Usage Examples (UE), on page 177.

Storefront templates and back office templates can both be overwritten.

7.5 Template Debugging

Before you can change the templates, you need to know which template displays which part of the Web
page. In other words, which template you must change. It is very helpful to activate the debugging
function. This displays the names of the templates used in the HTML source code of the page displayed.
Compare Figure 8with Figure 9.

Page 36 ePages 5 - Design and Cartridge Development Guide

Template Debugging Templates

! DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 strict//EN" "http://www.w3.org/TR/xhtmll/DTD/xhtmll-strict.dtd">
<html xmins="http://www.w3.0rg/1999/xhtm1" lang="de" xml:lang="de">
<head>

<titles=mMilestones - Gut geristet fur Ihre ziele</titles

<script type="text/javascript” src="/webRoot/Store/epages_scripts.js"=</script>
<meta http-e uiv:”content—Tyﬁe" content="text /html; charset=utf-g" />
<1ink href="/webroot/store/s upstemoShUp/Sty]es/MUturBikes,OOEF,RedfstorefrontstyTe.css" rel="stylesheet" type="text/css" />
<link href="/webRoot/Store/sF/Styles/Mystyle. css” rel="stylesheet” type="text/css" />
<1ink href="/webroot/store/sF/styles/Motoreikes/substyles/Red/styleExtension.css” rel="stylesheet" type="text/css" />
</heads>

<body>
<div class="Layoutl GeneralLayout">

<div class="Header">
<div_class="Propertycontainer”>
<table class="SizeContainer">=tr>

Figure 8: the HTML source code of a displayed page without debugging information

If debugging information is activated, the comment lines with template information are very easy to see:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 strict//EN" "http://www.w3.org/TR/xhtmll/pTD/xhtmil-strict. dud">
<htm1 xmIns="http://wew.w3.0rg/1999/xhtm1" Tang="de" xml:lang="de">

<!-- BEGIN INCLUDE C:\epages5‘Cartridges/DE_EPAGES/Presentation/Templates/BasePageType.Head.htm] 0.078 seconds -->
<head>

<!-- BEGIN INCLUDE C:\epagesS\cartridges/DE_EPAGES[DesﬁgnfTemp1atesfSFfSF.T1t1e.htm1 0.016 seconds -->
<title>milestones - Gut geristet Tur Ihre ziele</title>
<!-- END INCLUDE C:‘epages5\{artridges/DE_EPAGES/Design/Templates/SF/SF.Title.html -->

<!-- BEGIN INCLUDE C:\epages5\cartridges/DE_EPAGES/Presentation/Templates/BasepageType.script.html 0.016 seconds -->

<!-- BEGIN INCLUDE C:\epages5\Cartridges/DE_EPAGES/Presentation/Templates/BasePageType.script-Base.html 0.000 seconds -->
<script type="text/javascript” src=”fwebRoot/Store/epages_scri?ts.js”></scr1pt>

<!-- END INCLUDE C:‘epages5\Cartridges/DE_EPAGES/Presentation/Templates /BasePageType.Script-Base.htm] -->

<!-- END INCLUDE C:‘epages5\Cartridges/DE_EPAGES/Presentation/Templates/BasePageType.Script.htm] -->

<!-- BEGIN INCLUDE C:\epages5‘Cartridges/DE_EPAGES/Design/Templates/SF/SF.Head-ContentType.html 0.016 seconds -->
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<!-- END INCLUDE C:‘epages3‘\Cartridges/DE_EPAGES/Design/Templates/s5F/5F.Head-ContentType. html -->

<!-- BEGIN INCLUDE C:‘epages5‘shared\stores/store/Templates/DE_EPAGES/Design/Templates/sF/5F.5tyle.htm] 0,016 seconds -->
<link href="/webroot/store/shops/Demoshop/styles/Motoreikes 002F Red/storefrontstyle.css” rel="stylesheet” type="text/css" />
<link href="/webRoot/Store/sSF/Styles/MyStyle.css"” rel="stylesheet" type="text/css" />
<link href="/webRoot/store/sF/styles/MotorBikes/Substyles/Red/StyleExtension. css” rel="stylesheet” type="text/css" />

<!-- END INCLUDE C:‘epages5‘\sShared\stores/store/Templates/DE_EPAGES/Design/Templates/sF/sF.style.htm]l -—>
</head=>
<!-- END INCLUDE C:‘epages5\Cartridges/DE_EPAGES/Presentation/Templates/BasePageType.Head.html -->

<!-- BEGIN INCLUDE C:\epages5\Cartridges/DE_EPAGES/Design/Templates/SF/SF.Body.html 0.719 seconds -->
<body=

<!-- BEGIN INCLUDE C:\epages5\cartridges/DE_EPAGES/Etracker/Templates/sF/sF.INC-ETracker.html 0.016 seconds -—>

<!-- END INCLUDE C:‘epages5\Cartridges/DE_EPAGES/Etracker/Templates/SF/SF.INC-Etracker.htm]l -->
<!-- BEGIN INCLUDE C:\epages5‘Cartridges/DE_EPAGES/Design/Templates/s5F/5F.Layout.htm] 0.703 seconds --»>

<!-- BEGIN INCLUDE C:\epages5\Cartridges/DE_EPAGES/Design/Templates/SF/SF.Layoutl.htm] 0.703 seconds -->
<div class="Layoutl GeneralLayout'>

Figure 9 HTML source code of a displayed page with debugging information

Using the debugging information, you can determine exactly where which template is inserted and where
you can find it. This makes it simpler for you, coming from the area of the Web page that you would like to
change, to find to the template you must edit.

As an additional important parameter, you can see the processing type of each INCLUDE. Use this data to
optimise the performance of your application.

In order to activate debugging, open the following file:

%EPAGES_CONF1G%/1og4perl _conf

and search in the section t/efor the following entry:

log4perl.category.DE_EPAGES: :Presentation: :APIl: :Template: : INCLUDE=DEBUG

see Figure 10.

ePages 5 - Design and Cartridge Development Guide Page 37

Templates Template Debugging

tle

; logdper]. category. DE_EPAGES. TLE. API.Execute = DEBUG

; logdper]l. cateqory. DE_EPAGES. TLE. API.Lexer = DEBUG

; logdper]. category. DE_EPAGES. TLE. API. LoopHandler = DEBUG

; logd4per]. category. DE_EPAGES. TLE. API.Processor = DEBUG

; logdper]. category. DE_EPAGES. TLE. API.Processor.tle = DEBUG

; logdper]. cateqory. DE_EPAGES. TLE. API. Processor. getTLE=DEBUG

; logdper]. category.DE_EPAGES. TLE. API.XPathHandler = DEBUG

; logdper]. category. DE_EPAGES: :Dictionary: :API: :Template=DEBUG

; Togd 1 .DE_EPAGES: :0bject::API::0bject::0bject::getTLE=DEBUG
. DE_EPAGES: :Presentation: :API: :Template: : INCLUDE=DEEUG
; logdper |. category. DE_EPAGES: :Presentation: :UI: :PageTypeserviet: :processContent=DEBUG

H
3 webinterface and servilets

Figure 10: entry for activating debugging

After installation, these lines are commented out which deactivates debugging. Remove the semicolon at
the beginning of the line and save the file. After this, you can see the debugging information in the HTML
source code.

You can find more about the /log4peri.conffile in the /nstallation Guide for Windows.

Page 38 ePages 5 - Design and Cartridge Development Guide

Logical Structure PageType Concept

8.PageType Concept

A PageType is an XML file in which the display of an object is defined structurally. This makes a PageType a
connector between the ViewAction for an object and the display in the browser through templates. They
also determine which template is to be processed depending on the object and the display action
processed. This reference is made via the PageTypes and is saved in the database.

In addition to the area defined, the corresponding ViewAction is determined. A special ViewAction can be
named. If no ViewAction is explicitly named in the XML file, the ViewViewAction is used by default.

PageTypes are the basis for structuring templates as modules. Using PageTypes, it is possible to develop
the design and function to such a detail that the different page functions can be composed from the
individual modules with a great level of flexibility and re-usability.

Due to these complex interrelations, you should work through the practical examples using the basic
principles. This will help you better understand how to work with PageTypes.

8.1 Logical Structure

A PageType defines the logical structure of a Web page. Individual areas are determined from which the
page is combined. These logical sections are assigned to HTML files. They contain the source code for
describing the individual sections, that is, an actual HTML file is indicated for every section. For more
details, see Templates, on page 31 and Display Levels, on page 41.

You can view a simple example for the XML definition of a PageType in Code example 11.

<?xml version="1_.0" encoding="UTF-8"7?>
<epages>
<Cartridge reference="1" Package='"DE_EPAGES: :Presentation'>
<Class reference="1" Path="/Classes/Object">
<PageType Alias="Mail" delete="1">
<Template Name="Page" FileName="Mail .Page.html" />
<Template Name="'Head" FileName="Mail .Head.html" />
<Template Name="Body" FileName="Mail .Body.html" />
<Template Name="Content" FileName="Mail.Content_html" />
</PageType>
</Class>
</Cartridge>
</epages>

Code example 11: XML definition of a PageType
Cartridge reference... indicates the cartridge in which the template files are located.

Class reference ... indicates the PageType—object class assignment. The PageType in the example is
assigned to the object class called Object. This means that any object can use this PageType.

The name of the PageType is assigned under Alias. The attribute and value delete="1"indicate that when
the cartridge is uninstalled, the PageType will also be deleted from the database.

Template Name ... defines the logical section of the Web page where the content will be displayed.
Filename... indicates which HTML file is used to display this section.

PageTypes are hierarchical. The basis is the BasePageType. The BasePageType divides the page generally
with a reference to the corresponding original template. See Code example 12.

ePages 5 - Design and Cartridge Development Guide Page 39

PageType Concept

Logical Structure

<?xml version="1.0" encoding="UTF-8"7?>
<epages>
<I-- page types and templates -->
<Cartridge reference="1" Package="DE_EPAGES: :Presentation'>

<Class reference="1" Path="/Classes/Object">
<PageType Alias="BasePageType'" LoginViewAction="ViewLoginForm" delete="1">
<Menu Template="Head" Position="0">

<Menu Template=""Head-Title"
<Menu Template=""Head-Script"

Position=""10" />
Position="20" >

<Menu Template="'Script-Base" Position="10" />

</Menu>
</Menu>
<Template Name="Page'™ FileName=""BasePageType.Page.html*" />
<Template Name="Head" FileName=""BasePageType.Head.html" />
<Template Name="Body' FileName=""BasePageType.Body.html*" />
<Template Name='"Pager" FileName="BasePageType.Pager_html" />
<Template Name="'Head-Title" FileName=""BasePageType.Title_html" />
<Template Name="Head-Script" FileName="BasePageType.Script.html" />
<Template Name='"Script-Base" FileName=""BasePageType.Script-Base.html" />
<Template Name="Script-Event'"” FileName=""BasePageType.Script-Event_html"
/>

<Template Name="Script-XMLHttpRequest"
XMLHttpRequest.html™ />

<Template Name="Script-Slideshow"
Slideshow.html™ />

</PageType>
</Class>
</Cartridge>
</epages>

FileName="BasePageType.Script-

FileName=""BasePageType.Script-

Code example 12: BasePageType definition

The basic sections used on all the pages are assigned in this BasePageType. Depending on the desired
effect, additional PageTypes define these sections even more finely thereby resulting in additional more
specific sections. This means that the BasePageTypeis the source for inheritance within the PageType.

The starting point for the PageType hierarchy and the direction of the inheritance are illustrated in Figure
11.

BasePageType

|
! ' !

SF Backoffice
. (Backoffice
(Shop view) view)

) ,. ! l : : l
Pagetype: Pagetype: Pagetype: Pagetype Pagetype
SF-Basket SF-Product Imprint MBO TBO
(Shop view) (Shop view) (Shop view) (Merchant (Techn. Admin-

hackoffice) Backoffice)

Figure 11: PageType hierarchy (excerpt)

Page 40

ePages 5 - Design and Cartridge Development Guide

Display Levels PageType Concept

When you define a PageType, you can use inheritance and extensions to apply particular sections, to
assign another template to overwrite specific sections or to also extend specific sections with subsections.
A simple example is shown in Code example 13.

<?xml version="1.0" encoding="UTF-8"7?>
<epages>
<Cartridge reference="1" Package="DE_EPAGES: :Design'>
<Class reference="1" Path="/Classes/Shop"'>
<PageType Alias="'SF-Shop" Base="'SF" delete="1">
<Template Name="Content" FileName=""SF/SF-Shop.Content_html" />
<ViewAction URLAction="View" />
</PageType>
</Class>
</Cartridge>
</epages>

Code example 13: PageType with inheritance and overwriting an section
This PageType is defined in the Design cartridge and assigned to the object class Shop.

Use Base=... to define the parent PageType from which this particular PageType is derived. SF-Shopis
derived from SFand therefore inherits all the section definitions and templates.

Although in this case, the logical section called Contenthas been applied, it will be displayed using a
different template. This is done by assigning another template, SF-Shop. Content. HTML.

The Viewaction is assigned to the SAhop class of this PageType using the XML tag ViewAction. This means
that this action will display the object using this PageType. For more information, see UE 6:, on page 189.

8.2 Display Levels

A PageType always finds its complement at the display level, since for every logical section introduced, a
template which describes the HTML layout has been defined.

From the HTML point of view, PageTypes are collections of templates that determine how and where
functional content and data are displayed on the HTML pages. You can say they build the framework or
container for the current content that is inserted, depending on the function.

Templates are structures with the same hierarchy as page types. The BasePageType defines the Page, Head
and Bodylogical areas. Parallel to this, the respective templates are defined. See Code example 12. While
these templates define the general structure in HTML, as the number of levels in the hierarchy increase, the
layout function becomes ever more specialized.

8.2.1 Original Template

The original template defines only the HTML page itself and thereby fulfils the general layout requirement.
See Code example 14.

<IDOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0org/TR/xhtml1/DTD/xhtmll-strict.dtd">
<html xmIns="http://www_w3.0rg/1999/xhtml" lang="#INPUT.Language""
xml: lang=""#INPUT . Language'">

#INCLUDE(""Head")

#INCLUDE("'Body"")
</html>

Code example 14: Original template

ePages 5 - Design and Cartridge Development Guide Page 41

PageType Concept Display Levels

Each INCLUDE statement within the data functions as a type of placeholder and is replaced at runtime with
the current template. For more information about INCLUDE statements used as TLEs, read chapter 7L£, on
page 61.

The templates defined here are filled with general content. They represent a fallback variant in case the
template is not overwritten by a successor PageType.

For the original template, you see the content of the corresponding templates BasePagelype.Body. HTML
and BasePageType.Head.HTMLin Code example 15and Code example 16.

<head>#MENU("'Head"'")
#INCLUDE (#Temp late)#ENDMENU
</head>

Code example 15: INCLUDE template for the original template - Head section

<body>
</body>

Code example 16: INCLUDE template for original template - Bodly section

You can see that this template makes only the body structure of a page available. The actual content is
displayed using templates provided by subordinate PageTypes.

8.2.2 Template Hierarchy

The templates at the next level define the content and structure of the Headand Body sections. However,
general statements are hard coded and the variable content is filled by INCLUDE statements.

The structure of the HTML hierarchy is based on the PageType hierarchy created in the database using XML.
See figure 11.

Level 2 PageTypes display the design of the different main action levels: Back office for the administration
pages for the technical administrators (TBO), the business administrators (BBO) and the merchants (MBO)
and also SFfor shop page layout.

These templates determine the general layout of the HTML pages for each working level and therefore
define the uniform layout of HTML pages at each level for all functions.

Since the original template for the HTML page only describes the body very generally, the templates of the
second level describe this area more specifically. Code example 17shows an example for the body of back
office pages.

Page 42 ePages 5 - Design and Cartridge Development Guide

Display Levels PageType Concept

<body>
#INCLUDE(""Menu')
<table class="Maintable" cellspacing="0" cellpadding="0">
<tr>
<td class=""ContextBar'>
#INCLUDE(""ContextBar'")
</td>
<td class="Content'>
#INCLUDE("'Content')
</td>
</tr>
</table>
<div class="Footer">
<a class=""Copyright" href="http://www.epages.de"
onclick= "openWindow(this.href,"",""); return false;">
{Copyright}

</div>
</body>

Code example 17: defining the body for back office pages

In contrast, Code example 18 shows an example for the body of storefront pages:

ePages 5 - Design and Cartridge Development Guide Page 43

PageType Concept Display Levels

<div class="Layoutl GenerallLayout'>
#1F(#Shop.ClosedByMerchant OR #Shop.ClosedByProvider)
<div class="ShopClosed'>#Shop.ShopClosedMessage[0]</div>
H#ELSIF(#Shop.LoginRequired AND (NOT #Session.User OR
#Session._User . IsAnonymous))
#1F(#Style_.HeaderlsVisible)
<div class="Header">
#INCLUDE(""Header'")
</div>#ENDIF#IF(#Style.ToplsVisible)
<div class="NavBarTop'>
#INCLUDE(""NavBarTop')
</div>#ENDIF
<table class="Middle" summary="{LayoutTable}">
<tr>#1F(#Style.LeftlsVisible)
<td class="NavBarLeft" abbr="{NavBarLeft}">
#INCLUDE("'NavBarLeft'")
</td>#ENDIF
<td class="ContentArea" abbr="{ContentArea}'>
{PleaselLogin}
</td>#1F(#Style_RightlsVisible)
<td class="NavBarRight" abbr="{NavBarRight}'>
#INCLUDE("'NavBarRight')
</td>#ENDIF
</tr>
</table>#1F(#Style.BottomlsVisible)
<div class="NavBarBottom'>
#INCLUDE("*NavBarBottom™)
</div>#ENDIF#1F(#Style_FooterlsVisible)
<div class="Footer">
#INCLUDE("'Footer'™)
</div>#ENDIF
#ELSE
#1F(#Style_HeaderlsVisible)
<div class="Header'">
#INCLUDE("'"Header"")
</div>#ENDIF#IF(#Style.ToplsVisible)
<div class="NavBarTop'>
#INCLUDE(*'NavBarTop'")
</div>#ENDIF
<table class="Middle"™ summary="{LayoutTable}">
<tr>#1F(#Style.LeftlsVisible)
<td class="NavBarLeft" abbr="{NavBarLeft}">
#INCLUDE("'NavBarLeft'™)
</td>#ENDIF
<td class="ContentArea" abbr="{ContentArea}'>

#INCLUDE(*'Content')

</td>#1F(#Style_RightlsVisible)
<td class="NavBarRight" abbr="{NavBarRight}'">
#INCLUDE(*'NavBarRight')
</td>#ENDIF
</tr>
</table>#1F(#Style.BottomlsVisible)
<div class="NavBarBottom">
#INCLUDE(*'"NavBarBottom™)
</div>#ENDIF#IF(#Style_FooterlsVisible)
<div class="Footer'>
#INCLUDE("'Footer'™)
</div>#ENDIF
#ENDIF
</div>

Code example 18: defining the body for store front pages

This defines the basic layout of the HTML pages of the shop. Here, you can also see the structure in Figure
/.

Page 44 ePages 5 - Design and Cartridge Development Guide

Processing PageTypes PageType Concept

PageTypes based on individual object classes make up the next level in the hierarchy. This means that for
every object class, at least one PageType is defined that assigns the actual layout of the individual objects
on the HTML page. Examples of these object classes are Basket, Productand so on.

The objects are displayed in the working area depending on the action executed and the resulting data.

The same principle also applies to the subordinate levels in the hierarchy that display the object in
different views.

8.2.3 Object Method template

In the HTML files, template names are used mainly in connection with the TLE statement ##/NCLUDE, for
example, ZINCLUDE("Content”), see Code example 18.

Each object can change the template name using the femplate method. The original template name is
passed to the method, for example.

$0bject->template('<templatename>", <$0bjectPageType>)

The template the object uses is defined in this method. In most cases, the template that is used is the one
where the name has been passed.

In special cases, other template names or mechanisms for selecting specific templates can be defined in
this method.

This is applied to objects in the Lineltem class and its derived classes, for example. This option has been
used for applying class-specific templates. The template name is thereby applied and extended with the
class alias of the current object in such a way that the resulting template name is as follows:

<templatenameClassAlias>

If a template with this name is not defined, this method replaces the current class alias with the class alias
of the next higher object. In this way, the line of inheritance of the object is searched until a template is
found. If no valid template name is found during the search, the template simply labelled as template
nameis processed.

The following example demonstrates this: While the statement in Code example 19is being processed, the
TLE compiler reads out the template name ContentLine.

H#WITH(#Shipping)
#INCLUDE('"ContentLine'™)
HENDWITH

Code example 19: Example of a template call

The #WITH statement assigns the context to an object belonging to the LineltemShipping class. This object
replaces the template name with ContentlLinelineltemShipping. If the template is not defined, the method
falls back on Contentlinelineltem since Lineltemis the parent class of Line/temShipping. If the method
finds no other template along the object structure, the general Contentlinetemplate is processed as the
last possible variant.

This mechanism allows the method to define a general use template and to assign specific layouts to each
class using the simple template name. This is used, for example, in connection with the layout of
Lineltems. For more information, see Lineltems, on page 172. Also see the APl documentation at
DE_FPAGES/Order/APl/Object/Lineltem.

8.3 Processing PageTypes

ePages 5 - Design and Cartridge Development Guide Page 45

PageType Concept

Processing PageTypes

As mentioned in Logical Structure, on page 39, the ViewAction that is used to display an object as well as
the templates that are used for the layout are defined in the PageType.

After the action has been called, the processor starts with the Pagetemplate and then processes the

INCLUDE statements until the entire page has been regenerated and can be displayed.

In this way, the same object can be displayed in different environments depending on which PageType the

ViewAction has been assigned to.

Figure 12 shows the layout of a product in the shop. Figure 13 shows the layout of the same product on

the merchant administration page.

Milestones

W 2rjuipped fo ac

Categories

O Jackets

O Shoes

[Backpacks
Terits
Ecjuipment

Product search
+ Lovanced search

Promotional tems

#» Home page 3 Imprint * Contact » T&C » Customerinformation * Privacy Policy II EE |

Categories » Jackets » Jack Wolfskin Blizzard Jacket

Jack Wolfskin Elizzard Jacket

(Color : Croft; Size: L)

Solid Hurricane Windstopper fleece jacket. The cut mekes sure that
yiou look &z good &5 you are warm. From broad, strong shoulders to
your small waist, the coat tapers just like you do. Mo wasted
material--this jacket alowes dampness to be guickly transported. 910
/KL, Colors: biack (01, croft-beige (11)

B Procuct is in stock
£215.95
Price incl. %W84T, plus Shipping

Shopping basket

“our shopping basket iz empty.

Crder form
Signin

User name
Password

+ Forgot your password?
+ Regizter

. - Color | Croft v |
el e i) -+ Detil views Subzctibe to nevsletter
£29.95¢ size [L ~| -
/}“w\ Currency selection
L)
TONES
“‘;‘"_‘ e Addto shopping basket £ (Euro)
£ (Pound Sterling)
Addto shopping list
Meindl Lir Revolution 2.0 ¥ Recommend product
£163.93* “Sa Print wiem
Mag Lite Mini
£16.95¢ We also recommend
* Prices incl. “AT, plus Shipping
To clean your jacket To waterproof your jacket
Do you have any guestions?
Call our tall-free number at 0 800 / i
123 456.
We are happy to help.
i
- oS
Grangers Extreme Cleansr Grangers Extreme Waterproof
£9.95 " Ll 1495 |

* Prices incl. “AT, plus Shipping

Copyright & 2008 ePages Software GmbH

Figure 12: Layout of a product using SF PageTypes

Page 46

ePages 5 - Design and Cartridge Development Guide

Processing PageTypes

& mMilastones

4 Homne page

£ shop-Administrator
@ Sign out

I

) Optimization (inactive)

T products

View in the shop B
- Products
- Mew
~Product types
Price lists
- Search statistics
~Product settings
~Import and export
BMEcat import

W Tray

The tray is empty,

b

+ Jack Wolfskin Blizz...

¥ Favorites
¢ Ankindigung: Bicher,,

» Rermove all favorites

PRk 3

®

@ History

{

Jack Wolfskin Blizz...

Products - General

shop-Administratar ...

Ankiindigung: Bicher...

Meue Ide=n bei Mile...

Carmpagnes de bullet.,

Marketing
Statut de |2 boutig..,

% BB R R R B

Claar histary

PageType Concept

Product number Text search Language

Display per page

[English |

| 10 Results v‘

Products « Jack Wolfskin Blizzard Jacket (ho_40407)

General e](Images 1[Categories 1[Variations][Prices 1[Cross-selling][Portals]

~ Prices /inventory » Description » Attributes

Product number |ho_+0407

Wisible

List prices (Gross)

15.95 €

W
=
o
“
=
G
an

m

215.85

Yes Mo i)

Daily price dependent

Price refers to 1 piece i/
Minimurm order piace i/
quantity

Increment piece i/

Reference unit [v

| [tselect entry)

[]w@

Amount in product

|

Delate

Manufacturer

Manufacturer product | |

no.
Weight
Dirmensions
Length
Height

wridth

Stack level

Minimum stock leuvel

Delivery period

Figure 13: Layout of the same product using MBO PageTypes

[Jack wolfskin |

T —

piece i)

piece

dayi=)

ePages 5 - Design and Cartridge Development Guide

Page 47

Syntax for Language Tags Multiple Languages—Language Tags

9. Multiple Languages—Language Tags

With ePages 5, it is simple and easy to implement multiple languages into your Web application. For this
purpose, we have introduced the /language tagextension. Language tags are inserted as placeholders in
templates at any position where variable content should be displayed and depending on the language
chosen.

Note: Language tags are not placeholders for language-dependent values in the database such as
product attributes. Language tags are also not created or managed by the shop operator himself.

The language-dependent content for language tags is stored in easy-to-edit XML files. In this case, the
keyword has the same name as the language tag. Using the same name guarantees the reference between
the placeholder and the content.

This means that you only need to generate and maintain one template set in order to consistently insert
these language tags at language-sensitive positions in all the templates.

9.1 Syntax for Language Tags
The syntax of a language tag is very simple:
{<tagname»}

A language tag begins and ends with curly brackets. The variable name you have chosen is located
between the brackets. This variable name is also reused in the XML file.

The reference for this in the XML language file is structured as follows:

<?xml version="1.0" encoding="is0-8859-1"?7>
<epages>
<Language Language='en"'>
<Translation Keyword="tagname'>...content.._</Translation>
</Language>
</epages>

Code example 20: Definition of a language tag in an XML file

Note: All language tags are case sensitive. This means that a difference is made between upper case
letters and lower case letters.

In some cases, a language tag contains text that should not be translated. This could be a variable, for
instance, that is generated during runtime, for instance. These texts should be enclosed in a ¢notrans»tag.
See Code example 21.

<?xml version="1.0" encoding="i1so0-8859-1"?7>
<epages>
<Language Language=''en"'>
<Translation Keyword="tagname'>
...content... <notrans>#tleVariable</notrans>.._content...
</Translation>
</Language>
</epages>

Code example 21: definition of language tag with non-translatable content

For some language tags, it is necessary to provide some additional information about the tag in order for
the translator to be able to translate the tag correctly. For example, if the word Exportis to be translated by

ePages 5 - Design and Cartridge Development Guide Page 49

Multiple Languages—Language Tags Using XML Language Files

itself, it is important to explain whether the verb Exportfor a button or the noun Exportfor a header, for
example, is meant. To avoid such issues, a language tag can be supplemented with additional information
in the XML file. To do so, use the META attribute. See Code example 22.

<?xml version="1.0" encoding="i1s0-8859-1"?7>
<epages>
<Language Language=''en"'>
<Translation Keyword="Export" Meta="META- Noun''>Export</Translation>
</Language>
</epages>

Code example 22: using the Meta attribute

This tells the translator in the target language to use the correct word for the noun Export.

9.2 Using XML Language Files

In the following example, you can see how multiple languages are implemented on an HTML page using
language tags and the associated XML files. Only one template is used regardless of the number of
languages to be displayed.

The principle way of doing this is demonstrated in the example of the SF.LoginBox.HTML file, which
displays the sign-in area in the storefront. To give you a better overview, the sections of code used have
been reduced to a few language-relevant parts in the source code.

First, an HTML page is designed and coded:

<div class=""ContextBoxHead'>
<h1>Customer-Login</h1>
</div>

<div class="ContextBoxBody"'">
<div class="InputLabelling">User name</div>
<div class="InputField">#WITH_ERROR(#FormError)

<div class="InputLabelling">Password</div>
<div class="InputField">
<input class="Login" name="Password" type="‘password" value=""" />
</div>
</div>
</div>
<div class="ContextBoxBody"'">
<input class="Action" type="'submit" value="Sign in" />

</div>

Code example 23: Source code for multiple languages

This is displayed in the browser as follows:

Page 50 ePages 5 - Design and Cartridge Development Guide

Using XML Language Files

Multiple Languages—Language Tags

Milestones
We're equipped ta

Shopping basket

» Home page Imprint > Contact » T&C Customerinformation ® Privacy Policy L] EE T

Erjuipment
User name

Paszword

Product search
[la Welcome to the Milestones Demo Shop
Al products and prices shoven in this shop pages are for demonstration purposes only. They serve &5 a showcase

DTN S toillustrate the functionalty of the ePages system.

oty
-+ Register

Promotional tems

Biack Bear Gemini I\ Subseribe to newsietter
£29.95% Ii il
Currency selection
» Iz o v
,_,;;'!‘; £(Euro)
.'I \ / £ (Pound Sterling)
\
)) R

teindl Air Rewvolution 2.0 % [8y
£163 95 oY / \'. \,{4
Mag Lite hini
£18.95° Jack Wolfskin Blizzar ... Lestherman Tool Suri.. Eureka El Capitan 14
* Prices incl. WAT, plus Shipping £215.95 * £7295* £339.95*

Do you have any guestions? * Prices incl. WAT, plus Shipping

Call our toll-fres numkber at ¢ 800 /

123 456. Fresh wind in the online shop
We are happy to help Milestones ofters a fresh desion, an expanded assortment, and more service for your purchases. +Mare (Print our

Specials)

Copyright @ 2006 ePages Software GmbH

Categories

O Jackets Your shopping basket is empty.
O Shoes Coming soon

[Backpacks Cirger form

Terts Uopa & Bools Sign in

Figure 14: display of the language-independent source template

Now the question is, which parts of the text on the HTML page should be displayed as language-specific.

This is where language tags come into play. See Code example 24.

<div class=""ContextBoxHead">
<h1>{CustomerLogin}</h1>
</div>

<div class="ContextBoxBody"'">
<div class="InputLabelling">{UserName}</div>
<div class=""InputField">#WITH_ERROR(#FormError)

<div class=""InputLabelling">{Password}</div>
<div class="InputField">
<input class="Login" name="Password" type="‘password” value=""" />
</div>
</div>
</div>

<div class="ContextBoxBody"">
<input class="Action" type="'submit" value="{Login}" />

</div>

Code example 24: inserting language tags

Now, instead of static IDs, the browser displays the language tags in the corresponding positions:

ePages 5 - Design and Cartridge Development Guide

Page 51

Multiple Languages—Language Tags Using XML Language Files

estones
e equippe

» Home page ® Imprint *» Contact » T&C ® Customerinformation * Privacy Policy II m =]

Categories Shopping basket
O Jackets - - Your shopping basket is empty.
O Shoes Coming soon
O Backpacks M & Book
aps OOKS _
Terts p {CustomerLogin}
Enjuipmert
1A {U=zertame}
Product search
{Pazsword}
[]% Welcome to the Milestones Demo Shop
Al products and prices shoven in this shop pages are for demonstration purposes only. They serve as a {Login}
DTS SEEE showecase toillustrate the functionality of the ePages system.
+ FOrgoT YO Passor
Promotional tems +Register
ElkIelk o] JI .I| Subzscribe to newsletter
£29.95* \
.4 Currency selection
&
=
== £(Euro)
,.. o £ (Pound Sterling)
o . IHEY.
Meinddl Air Rewvolution 2.0 % [i
£169.35¢ [\
s =
Mag Lite Mini
£16.35 Jack YWolfskin Blizzar ... Lestherman Tool Suryi... Eureka El Capitan v
* Prices incl. VAT, plus Shipping £215.95* £72.95 * £339.95
Do you have any guestions? * Prices incl. W4T, plus Shipping
Call our toll-free number &t 0 800 /
123 456,

Fresh wind in the online shop
W are happy to help. Milestones offers & fresh design, an expanded assortmert, and more service for your purchases. +Mare
[Print our Specialz)

Copyiight ® 2005 eFages Software GmbH

Figure 15: display of the template with language tags

The language-dependent information must now be included in the corresponding XML language files. Every
language has a separate XML file.

The XML file is saved in the same directory as the HTML file and has the same name plus an extension that
indicates the language used. In our example, if the file for the template is named SF.LoginBox.HTML, this
means that the associated XML language file for German is named SF.LoginBox.de.xm/, and for English, it
is named SF.LoginBox.en.xml.

The language content for every language is inserted into this XML file, see Code example 25 and Code
example 26.

<?xml version="1.0" encoding="is0-8859-1"?7>
<epages>
<Language Language="de">
<Translation Keyword="CustomerLogin'>Anmeldung</Translation>
<Translation Keyword="UserName'>Benutzername</Translation>
<Translation Keyword="Password">Kennwort</Translation>
<Translation Keyword="Login">Anmelden</Translation>
</Language>
</epages>

Code example 25: XML entries for the language tags in German

Page 52 ePages 5 - Design and Cartridge Development Guide

Using XML Language Files Multiple Languages—Language Tags

<?xml version="1.0" encoding=""1s0-8859-1"?>
<epages>
<Language Language="en®">
<Translation Keyword="CustomerLogin'>Sign in</Translation>
<Translation Keyword="UserName'>User Name</Translation>
<Translation Keyword="Password">Password</Translation>
<Translation Keyword="Login">Sign in</Translation>
</Language>
</epages>

Code example 26: XML entries for the language tags in English

The encoding is indicated for every XML file. The important thing is to make sure the encoding and the
character set used in the file agree. You can use a different encoding for every language file, if necessary.

Now when the template is processed, the XML file for the requested language is read out. See Figure 16
and Figure 17.

1l ER ™

ationen 3 Dat hutz

¥ Startseite = Impressum = Kontakt = AGB = Kundeni

Warenkorh

HKategorien
O Jacken — Ihr Warenkork ist leer.
O Schutbe = "_' Demnéchst hier im Shop
O Rucksacke = & | B Bestellformular
A % arten ucher

Zette \ Anmeldung
ST . 3 Benutzername
Produktsuche i ”

EMnYol
[1% Willkommen im Milestones Demoshop

: Die auf diesen Seiten dargestelten Produkte und Preize stellen keine Angebate dar, sondern dienen

DERPEIS IS SR D lediglich der beizpiehaften Yeranschaulichung der Funktionen des ePages Shopsystems.

=+ Kennywvort vergessen?

-+ Redistrieren

Aktionsprodukte

E":gc';;‘aar Gemini]I \ Mewvsletter abonnieren
’ /'q..—,..ﬁ .4 Wihrungsauswahl
=, s
] 3
ES1ON B
[\ e £(Burao)
." \ £ (Pound Sterling)
b A
Meindl Air Revolution 2.0 % I\ J
£169 95+ AN \ \
Mg Lite Wi)
£16,35% Jack Wolfskin Blizzar .. Leatherman Pocket Sur... Eureka El Capitan [+

* Preise inkl. hwst., z2gl. “ersand

Hahen Sie Fragen?

Unsere gebihrenfreie Hotline
erreichen Sie unter 0 800 /123
456

Wir beraten Sie gern.

£215,95 £72,95 £339,95

* Preize inkl. hMwst., zzgl. “ersand

Frischer Wind im Onlineshop
Milestones histet ab sofort neben sinem frischen Design ein erwetertes Soriment und mehr Service rund

um Ihren Einkauf. +Mehr (Unsere Angebote zum Susdrucken)

Copyright @ 2005 ePages Software GmbH

Figure 16: Web page in German

ePages 5 - Design and Cartridge Development Guide

Page 53

Multiple Languages—Language Tags Using XML Language Files

Milestones

2guipped to

» Home page Imprint > Contact » T&C Customerinformation ® Privacy Policy L] EE T

Categories Shopping basket
O Jackets Your shopping basket is empty.
O Shoes Coming soon
[Backpacks Cirger form
T, Maps & Books Sign in
Erjuipment
User name
Product search
Paszword

[& Welcome to the Milestones Demo Shop

All products and prices shown in this shop pages are for demonstration purposes only. They serve as a showcase ign i
+ Advanced search .p & y i purp g ¥
toillustrate the functionalty of the ePages system.
oty
Promotional tems -+ Renister

Black Bear Gemini
£28 .85+

Subscribe to nevwsletter

Currency selection

£(Eura)
£ (Pound Sterling

teindl Air Rewvolution 2.0
£169.95*

Mag Lite hini
£16.95* Jack Wolfskin Blizzar ... Leatherman Tool Survi.. Eureka El Capitan [V
* Prices incl. AT, plus Shipping £215.95 £72.95 " £339.95
Do you have any guestions? * Prices incl. WAT, plus Shipping
Call our toll-fres numkber at ¢ 800 /
123 456. Fresh wind in the online shop
We are happy to help Milestones ofters a fresh desion, an expanded assortment, and more service for your purchases. +Mare (Print our

Specials)

Copyright @ 2006 ePages Software GmbH

Figure 17: Web page in English

Using this principle, you can insert language tags wherever you want to display language-dependent
content and extend the corresponding XML file.

This makes adding still another language very simple. You only have to create the XML file and collect the

corresponding language entries, for example, for French, the file would be SF£.LoginBox.fr.xm! with the
entry:

<?xml version="1_.0" encoding="i1s0-8859-1"?7>
<epages>
<Language Language="fr-">
<Translation Keyword="CustomerLogin'>Connexion</Translation>
<Translation Keyword="UserName">Nom d"utilisateur</Translation>
<Translation Keyword="Password'>Mot de passe</Translation>
<Translation Keyword="Login'>Connexion</Translation>
</Language>
</epages>

Code example 27: XML entry for the language tags in French

The ISO 3166-1 alpha-2 code abbreviations are used for the country IDs.

Note:

1. The prerequisite for displaying an additional language is activating that language for the shop. To
find out how to activate a language, refer to the corresponding administration manuals.

2. If the changes you made to the XML language files are not immediately visible, delete the [ctmpl]
directories. This may also be necessary when you copy files that have different time stamps.

Page 54 ePages 5 - Design and Cartridge Development Guide

http://dict.leo.org/sf?lp=frde&p=/Mn4k.&search=annoncer

Overlaying XML Language Files Multiple Languages—Language Tags

9.3 Overlaying XML Language Files

You have the option of overlaying XML language files, that is, you can use specialized XML files that
overwrite general content.

For this purpose, three different XML language files have been defined. The sequence in which these files
are processed is determined by the system.

In the sequence they are processed, they are as follows (example for back office templates in English):

1. %EPAGES_CARTRIDGES%/DE_EPAGES/Dictionary/Templates/Dictionary.en.xml

2. %EPAGES_CARTRIDGES%/DE_EPAGES/<cartridgenames/Templates/Dictionary.en.xm/!

3. %BEPAGES CARTRIDGES%/DE_EPAGES/<cartridgenames/Templates/
<templatedirectorys/<templatename>.en.xm/!

During this process, the XML files become increasingly specialized in their language content as reflected in
the numbering. This means that the first line contains general translations that apply to the entire
application and can be found on all the pages, while the third line contains translations that referto a
specific template and also are only used in that template.

For example, the file %EPAGES_CARTRIDGES %/EN_EPAGES/Dictionary/Templates/Dictionary.en.xm/!
contains the translations for texts such as Delete and Save, that are displayed the same way on almost
every HTML page. For an example, see Code example 28.

<Translation Keyword="Back'>Back</Translation>
<Translation Keyword="Next''>Next</Translation>
<Translation Keyword="Finish">Finish</Translation>
<Translation Keyword="Delete'">Delete</Translation>
<Translation Keyword="New">New</Translation>

<Translation Keyword="Save" Meta="Verb''>Save</Translation>
<Translation Keyword="Close">Close</Translation>
<Translation Keyword="Update'>Update</Translation>
<Translation Keyword="Clone">Duplicate</Translation>
<Translation Keyword="Apply">Apply</Translation>
<Translation Keyword="RunBatchAction'>Execute</Translation>

Code example 28: Selection from Dictionary.en.xm!

The global entry for RunBatchActionis used in the following location

ePages 5 - Design and Cartridge Development Guide Page 55

Multiple Languages—Language Tags

Overlaying XML Language Files

Products
General
Product number List price i Stock level &7
|:| l.i be_40401 g Barghaus Paclite Jacket - Man £199,95
I:‘ l‘i be_40402 & Barghaus Paclite Jacket - Women £199.95
D l.i cg_0100504001 Campingaz Twister 270 £22,95 11
|:| I,'E cg_ 0101004270 Campingaz CY270 Valve Gas Canister £32,95 2
I:‘ l‘i cg_0101104470 Campingaz CW470 Value Gas Canister £7.95 5
D l.i de_3201212002 Deuter Hydra 2.0 £74.95 25
|:| l'i de_3203104010 Deuter Kangaroo £99,95 i0
I:‘ l‘i de_ 32061990010 Deuter Teddy Bear £26,95 i1
D l.i eg_1000111010 Eureka El Capitan IV £339.95 1z
|:| l'i er 7142303001 Edelrid Black Bear Rope £1.45 500
e ¢ [1123 5 5 Humber: 22
L Save] | (Select entry) w [Execute]

Figure 18: Displaying Execute based on Dictionary.en.xm!

The file <templatename».en.xml(3.) on the other hand, contains only the language information for the

template of the same name.

You can overwrite this language tag by using the same language tag name in more than one of these XML
language files. For a Keyword, the value used is the one set in the most specific of the three files
mentioned above for this keyword.

As an example, we will overwrite the text in Figure 18 using a type (3) file. The template that displays the
page in Figure 18is called MBO-Products.Content. HTML. In the same directory, you can find a file named
MBO-Products. TabPage.en.xml. We add the following entry to it:

<?xml version="1.0" encoding=""1s0-8859-1"?>
<epages>
<Language Language="'en"'>
<Translation Keyword="RunBatchAction">Start action</Translation>
</Language>
</epages>

Code example 29: overlaying a general language tag

This means that the content from the general language file for the language tag RunBatchAction — Execute
from Code example 28is overwritten with the entry Start action. After processing the template, the
following is displayed:

Page 56 ePages 5 - Design and Cartridge Development Guide

Overlaying XML Language Files

Multiple Languages—Language Tags

Products
General &
Product number List price AV Stock level &7

I:‘ I‘i be_40401 5 Berghaus Paclite Jacket - Men £199,35
I:‘ I‘i be_40402 & Barghaus Paclite Jacket - Wornen £199.95
D I,.i cg_0100504001 Carmpingaz Twister 270 £22,95 11
I:‘ I,‘_ cg_ 0101004270 Campingaz V270 Valve Gas Canister £3,95 2
I:‘ I‘i og_0101104470 Campingaz CY470 Valve Gas Canister £7.95 3
l:‘ I‘i de_3201212002 Deuter Hydra 2.0 £74.95 25
I:‘ I‘i de_3203104010 Deuter Kangaroo £949,95 io
I:‘ I,'i de_ 3206199010 Deuter Teddy Bear £26,95 11
I:‘ I,‘i eg_1000111010 Eureka El Capitan IV £339.95 1z
I:‘ I‘i er_ 7142303001 Edelrid Black Bear Rope £1.45 500

@ | | [| [[]
[] | [Seleck entry) LY |[Start action]

Figure 19: result of the overlaying

This overlaying is valid as long as the keyword RunBatchActionis present in the MBO-
Products.Content.en.xmlfile. If the keyword is deleted from the file or the file itself is deleted, the original
value in the Dictionary.en.xmlfile is displayed.

The XML language files for other languages are created the same way. The enis replaced with Language
Code (Ic) in the file name and the translations are entered for the language tags.

For the language files, the same order applies:

1. %EPAGES_CARTRIDGES%/DE_EPAGES/Dictionary/Templates/Dictionary.lc.xm!
2. %EPAGES_CARTRIDGES%/DE_EPAGES/<cartridgenames/Templates/Dictionary.lc.xml
3. %BEPAGES CARTRIDGES%/DE_EPAGES/<cartridgenames/Templates/

<template directorys/<template name».lc.xml

When the template is processed, the system is set to the currently displayed language. If the current
language is English, the language tags are replaced by the content of the XML language files with the
identifier en. If the display language is German, deis the identifier evaluated.

This makes it easy to extend to other languages, for example, French — 7, Spanish — es, and so on.

Note:

1. Make sure that the language that you would like to display is also activated for the application! To
activate a language, refer to the corresponding administration manuals.

2. If you make any changes in the original files, they can be overwritten by a later update or upgrade. In
order to keep your installation updateable, use the option of overlaying the original files. This also
applies for dictionary files. For more on this, see Overlaying Templates, on page 35.

You have the option of using a script to check whether all the language tags for a selected database and
language have been completely replaced or whether redundant tags appear in the localization files. For
this, use the following script:

perl %EPAGES_CARTRIDGES%/DE_EPAGES/Presentation/Scripts/checkLanguageTags.pl

The call

ePages 5 - Design and Cartridge Development Guide

Page 57

Multiple Languages—Language Tags Localising Database Content

perl %EPAGES_CARTRIDGES%/DE_EPAGES/Presentation/Scripts/checkLanguageTags.pl —help

displays the available options and call parameters. One possible example of this can be seen in the
following:

perl %EPAGES_CARTRIDGES%/DE_EPAGES/Presentation/Scripts/checkLanguageTags.pl
-storename Store -language en

9.4 Localising Database Content

For localising database content such as attribute names or attribute descriptions, definitions and
language-dependent content are also separated. The following example demonstrates this.

The features of the Features.xmlfile are defined in the Productcartridge.

<?xml version="1.0" encoding=""is0-8859-1"7>
<epages>
<Object reference="1" Alias="Features'>
<Feature Alias="Products"™ MaxValue="'100000" Cartridge="DE_EPAGES: :Product"
delete="1" Position="30" />
<Feature Alias="Variations" MaxValue="50" Cartridge="DE_EPAGES: :Product"
delete="1" Position="60" />

" </Object>
</epages>

Code example 30: defining features

The name and description of a feature should be shown in the MBO language-dependent One language file
per language is created for this. The following naming convention applies:

Translation.<filename».<language codes.xm/!
For our example, (Features.xml, the following applies:

- for German: Translation.Features.de.xm!
- forEnglish: Translation.Features.en.xml!

The corresponding English language file, which corresponds to Code example 30, can be seen in Code
example 31.

<?xml version="1.0" encoding="1s0-8859-1" ?>
<epages>
<Language Language=''en"'>
<Object Path="/Features/Products'>
<Attribute Name="Name'>Products</Attribute>
<Attribute Name="Description">Number of products</Attribute>
</Object>
<Object Path="/Features/Variations''>
<Attribute Name="Name'>Variation attributes for products</Attribute>
<Attribute Name='"Description'”>Number of attributes which can be used to
create product variations</Attribute>
</Object>

N ;/Language>
</epages>

Code example 31: English language file for Features.xml

The German language file which corresponds to Code example 30 can be seen in Code example 32

Page 58 ePages 5 - Design and Cartridge Development Guide

Localising Database Content

Multiple Languages—Language Tags

<epages>
<Language Language="'de'>

</Object>

</Object>

. ;/Language>
</epages>

<?xml version="1.0" encoding="1s0-8859-1" ?>

<Object Path="/Features/Products'>
<Attribute Name="Name''>Produkte</Attribute>
<Attribute Name="Description'>Anzahl von Produkten</Attribute>

<Object Path="/Features/Variations'>
<Attribute Name="Name'>Variationsattribute fir Produkte</Attribute>
<Attribute Name="Description'>Anzahl von Attributen, welche zum Anlegen von
Produktvariationen genutzt werden kdnnen</Attribute>

Code example 32: German language file for Features.xm!

This has the following advantages:

- Consistent translation of all localisable strings
- Translation of localisable database content by cartridge is possible

- Importing the translation for multiple languages during installation of the cartridge is possible
- XML files with object definitions do not need to be changed if the localization changes

This concept applies to the following types:

- Actions,

- Attributes,

- Features,

- MailTypeTemplates,
- NavBars,

- NavBarElements,

- NavElementGroups,
- PaymentTypes,

- TemplateTypes,

- UnitsOfMeasurement,
- StyleGroups

ePages 5 - Design and Cartridge Development Guide

Page 59

Syntax for TLE TLE

10. TLE

Using template language extensions (TLE), it is possible to dynamically load, process and display Web
page content. Web sites that use standard HTML can only generate "static" Web pages with very specific
content. This means that Web designers have to create a separate Web page for every possible display
option.

ePages removes this burden from the Web designer and the system resources by generating "dynamic"
Web pages at runtime. When the customer clicks a link in the storefront, ePages chooses the templates to
be used and creates the page with data from the database according to the TLE information in the
template. By reading out and evaluating the data at runtime, the resources required for complex pages are
reduced.

TLEs are made up of variables and statements.

10.1 Syntax for TLE

All TLE variables and statements are preceded by a hash symbol (#):
#cObjectAttributes

Example: #Shop .NameOrAl ias

or
#cvariablennames

Example: #Alternate

or
#<TLEstatements

Example: #1F(#LongDescription)#LongDescription[0]#ELSE#Description[0]J#ENDIF

Note: All TLE variables and statements are case sensitive. This means that a difference is made
between upper case letters and lower case letters.

In the following chapters, the syntax for TLE variables and statements will be described and demonstrated
using examples. All the examples are taken from the original files.

Before you work with and modify the examples in the files, please read Overlaying Templates, on page 35.
After this, use overlaying to not only practice using TLEs but to also make sure that your ePages 5
installation functions properly.

10.2 TLE Variables

TLE variables are placeholders for dynamic information from the database. With the help of these
placeholders, data are displayed that might change whenever a page is opened. You add TLE variables to
the HTML file just as you add normal text. When a specific page is opened, the values of the variables are
immediately determined via a database query and displayed together with the HTML page.

Sources for values for TLE variables are:

ePages 5 - Design and Cartridge Development Guide Page 61

TLE

TLE Variables

- Object attributes,

- URL parameters,

- Input data from HTML forms,
- Cookies,

- ViewActions

- TLE functions,

- Dynamic TLE variables

- Session parameters

The TLE variables from the sources mentioned can be inserted in any template.

The active object is the object which is opened by a ViewAction. Through its page type, the necessary
templates are provided to show the Web site in question. See also Processing PageTypes, on page 45. This
object creates the context for the available TLE variables.

For example, if you would like to display product data and have called the action for displaying a product,
the active object is Product. In order to display the name of the product in the template, add the TLE
variable #NameOrAlias at the appropriate position. Through this action, the system recognizes that it is
dealing with the context of the object Products and fills the variable with the name of the product.

If you instead execute the display action for users, the system recognizes the object Useras the context.
Here, for example, #Vameis used to display the name of the user on the Web page.

To display data from one context in a different context, you need to indicate the entire "context path" for
the TLE variables or change the context.

If you would like to display, for example, the name of the user currently signed in when displaying product
A, you need to switch the context for this display since the current user is not assigned to the object
Product A.

The current user is saved in the current session. Therefore, for the TLE variable indicate the following:
#Session.User.NameOrAlias.

There are five contexts for accessing data for both the Merchant Back Office and the store front:

- INPUT

- Session

- System

- Shop

- Current context (for example, products, shopping basket)

Any object property can be queried using a TLE.

Examples for using TLE variables in templates can be found in Code example 33.

Pag

e 62 ePages 5 - Design and Cartridge Development Guide

TLE Statements

TLE

#1F(#IsVisible)
<div class="ProductDetails">
<hl1>#NameOrAlias</hl1>
<div class="Separator'></div>
#1F(#ImageMedium)
<div class="ImageArea">
#1F(#ImagelLarge)

<img class="ProductMediumlmage" src="#ImageMedium[webpath]"
alt="#NameOrAlias" title="#NameOrAlias" />

{DetailedView}

#ELSE
<img class="ProductMediumlmage" src="#ImageMedium[webpath]"
alt="#NameOrAlias" title="#NameOrAlias" />
HENDIF
</div>
#ELSIF(#ImageSmall) <div Class=""ImageArea'>
#1F(#ImageLarge)

<img class="ProductSmalllmage" src="#ImageSmall[webpath]""
alt="#NameOrAlias" title="#NameOrAlias" />

#ENDIF</div>
HENDIF
<div class="InfoArea">
#1F(#LongDescription)#LongDescription[O]#ELSE#Description[O]#ENDIF
<div class="Price'">
#LOOP(#ListPrices)
#1F(#CurrencyID EQ #INPUT.Currency AND #TaxModel == #Shop.TaxModel)
#Price[money]
HENDIF
#ENDLOOP

Code example 33: using TLE variables

The data from the various sources are read as follows:

Object: #¢(context.)attributename>

URL parameters, form field contents: #/NPUT.parametername

Interim results: #c«variablenname»

Note: Certain TLE statements change the context. See #W/TH, on page 67, and #LOOP, on page 67.

Anther option for displaying data independent of the context is to use the Object.Child attribute. You can
use this attribute to display practically any object anywhere if the object ID is known. For instance, you can

take the shop address on the Contact Information page and also display it on a catalogue page:

#Shop.Child.Pages.Child. Imprint._Address

10.3 TLE Statements

TLE statements are ePages-specific commands used to display templates/Web pages depending on the

content.

This means that you can process specific template sections according to certain conditions or easily
display variable amounts of data using loop statements.

ePages 5 - Design and Cartridge Development Guide Page 63

TLE TLE Statements

You can insert the following statements:

10.3.1 #IF

With the help of an #IF statement, you can process sections of a template according to certain conditions.
You can create simple conditions with #IF and #ENDIF.

For more complex conditions, you can use the #ELSIF tag and the #ELSE tag. The value of a TLE variable is
determined by evaluating the #IF statement in real time.

Conditions and value comparisons can be used not only for character strings (TLE variables, and so on) but
also for numerical values.

Syntax:

#IF (cexpressions) ... #ENDIF
or

#IF (cexpression’) ... #ELSE ... #ENDIF
or

#IF (<expression)) ...

#ELSIF (cexpressions) ...

#ELSIF (cexpression’) ...

#ELSE ...
#ENDIF

You can see an example of a complex #IF statement in Code example 34.

Page 64 ePages 5 - Design and Cartridge Development Guide

TLE Statements TLE

#IF(#Class.Alias EQ '"'Category')
<div class="ProductListHead">
<h2>#NameOrAlias</h2>
</div>
#1F(#Image)
<div class="ImageArea'>

</div>
HENDIF
#ELSIF(#Class.Alias EQ "Article™)
<div class="InfoArea">
<h3>#NameOrAlias</h3>
#Abstract
</div>
<div class="Links">
{More}
#1F(#Attachment)

#1F(#AttachmentTitle) (#AttachmentTitle)#ELSE(#Attachment)#ENDIF

HENDIF
</div>
H#ENDIF

Code example 34: example of an #IF statement

10.3.2 #INCLUDE

The #INCLUDE statement lets you imbed a template within another template. In this way, you can use
elements (for example, icon bars) in more than one element using a simple #/NCLUDE statement. The
imbedded template is inserted at runtime instead of the #INCLUDE statement. Any changes in the HTML
code for the imbedded template are immediately applied to all the templates using the corresponding
INCLUDE statement.

Syntax:
#INCLUDE("ctemplatenames"[, "NoDebug"])
Example:#INCLUDE("'Content')
#INCLUDE(#Template)
Example: #INCLUDE(#Template)

The second variation is used when the template name is not yet known but is provided dynamically. This
variation is typically used together with #8LOCK and Menu. See original templates.

The NoDebugparameter is optional. If it is used in an INCLUDE, the comment line with the template
information in the source is not shown. For more on this, see 7Template Debugging, on page 36. Use these
parameters in templates in which the HTML comment characters are not known and that could lead to
errors. An example of this are CSS files with INCLUDE.

10.3.3 #LOCAL

Use this statement to define an area of validity in the template. Here, specified variables or their current
values are valid only in this area.

Syntax:

ePages 5 - Design and Cartridge Development Guide Page 65

TLE TLE Statements

#LOCAL("¢cvariablennames”, <werts) ... #ENDLOCAL

#LOCAL("'TaxClassID", #ID)
#LOOP (#Shop . TaxMatrix.TaxClasses)
<option value="#ID"#I1F(#TaxClassID AND #TaxClassID NEQ #ID)
selected=""selected"#ENDIF>
#NameOrAlias
</option>
H#ENDLOOP
#ENDLOCAL

Code example 35: example of #LOCAL statements
In this example, the variable 7axClass/Din #LOCAL is given a new value that is valid until #ENDLOCAL. After

#ENDLOCAL, the variable is given its original value or becomes invalid if it did not exist before the #LOCAL
statement.

10.3.4 #SET

Use this statement to set a variable for the global context. This means that you can access this context
from anywhere within the whole template. A variable set with #SET can be accessed up to the end of the
HTML page that called the template. Even when the variable is specified in a template that is loaded into
the page per INCLUDE, it can be accessed up to end of the HTML page, that is, from the master template.
In general, you should always restrict #SET using #LOCAL/ #ENDLOCAL.
Syntax :
#SET("cvariablenames”, <values)
Example: #SET("'FirstNavBarlID",#ID)
or
#SET("variablenames”, <expressions)
Example: #SET("'Number'', #Number + 2)
10.3.5 #GET
You use the statement to request a TLE variable and to access its value.
Syntax:
#GET(cvariablenames)
Example: #GET (#Attribute.Alias)
Example: #GET ("Number™)
or
#GET(cexpressiony)
Example: #GET ("'Num'* . ""ber')
In the case of #GET("Number"), you can dispense with GET. The expression #Numberis equivalent. If the

name of the attribute to be displayed is first detected at runtime, use a form such as #GET
(FAttribute.Alias).

Page 66 ePages 5 - Design and Cartridge Development Guide

TLE Statements TLE

10.3.6 #CALCULATE

The statement returns the result of a calculation expression.
Syntax:

#CALCULATE(<expression>)
Example: #CALCULATE((#1temNo+1) * 10)

10.3.7 #WITH

This statement triggers the current context reference for TLE variables and defines local validity. This
means that you set a new context that is only exists within the #WITH statement.

Syntax:

#WITH (cexpression) ... #ENDWITH

H#WITH(#Shop .Categories)
<option value="#ID">
#JOIN('' /", #PathFromSite) #NameOrAlias #ENDJOIN
</option>
#INCLUDE("'SubCategories')
#ENDWITH

Code example 36: #W/TH statement
In Code example 36, #WITH is used to set the context to Shop.Categories. This is why the #/D query also
returns the shop category ID. The product category context was in effect up to that point for the template, in

which this #WITH statement is imbedded. A simple query for #/Dwould have resulted in the ID of the
current product category.

10.3.8 #LOOP
You can use #LOOP statements to display different list elements. These elements can be categories,
products, items in the shopping basket or data structures that ePages provides in arrays. It is easy to
create simple lists using #LOOP statements in templates.
Syntax:

#LOOP (<loopvariables) ... #ENDLOOP

Loop variables apply to the template locally. The entire HTML code and TLE between #LOOP and
#ENDLOOPis repeated for each element in the loop variable.

Within a LOOP statement, the template context is exited and the context of the loop variables applies. For
more on this, see 7LE Variables, on page 61.

You can see a #LOOP example in Code example 37.

#LOOP (#Categories)
#CategoryName
#ENDLOOP

Code example 37: #LOOP

ePages 5 - Design and Cartridge Development Guide Page 67

TLE

TLE Statements

Note: The sequence of the list elements is always determined by sorting in the back office. For more

information, refer to the Sorting in Tables chapter in the Merchant User Guide.

10.3.9 #JOIN

This statement is used to initiate a loop that returns a character string. You can use this to specify the
character to be inserted between the individual elements as a separator.

The statement thereby extends the #.0OP statement with a separator definition.
Syntax:

#/OIN (“<characten”, <loopobject) ... #ENDJOIN
Example: #JOIN(C"," ,#Users) #Alias #ENDJOIN

In this example, all the users are listed, separated by a comma.

10.3.10 #FUNCTION

Use this statement to call TLE functions from the template. The function must be registered in the TLE
compiler.

Syntax:
#FUNCTION("<functionname»", <parameter1>, <parameter2s, ... <parameter ns)
Example: #FUNCTION("REFERENCEPRICE", #Product.Object, #Price)

The functions each return a single value.

10.3.11 #BLOCK

Use the #BLOCK statement to transfer template code to a function. This code is processed when a function
is called. A value is returned, usually a string which contains the processed template code. #8LOCKis an
extension of the #FUNCTION around the template or the template code up to #ENDBLOCK.

Syntax:

#BLOCK("<name>", <parameter1s, ... parameter ns) ... #ENDBLOCK
Example: #BLOCK(**'MENU"", "*Content')#INCLUDE (#Temp late)#ENDBLOCK
Using the code in the example above, all the entries defined for the Content menu are displayed on the
page. In addition, the Menufunction is called using the Contentparameter. This means that the entries for
the menu with the name Contentare read in sequence from the corresponding PageTypes. In the TLE

#Template, the name of the template that displays the corresponding entry is passed. In this way, the
template displays for the individual entries in the calling template are integrated sequentially.

10.3.12 #WITH_LANGUAGE

You can use this statement to switch the current language context.
Syntax:

#WITH_LANGUAGE (cvariablename?) ... #ENDWITH_LANGUAGE

Pag

e 68 ePages 5 - Design and Cartridge Development Guide

Error TLE TLE

#LOOP (#Shop . Languages)
#WITH_LANGUAGE (##LanguagelD)
#LongDescription
#ENDWITH_LANGUAGE

#ENDLOOP

Code example 38: example of #WITH_LANGUAGE
In the example, a loop is executed for all active shop languages. #WITH_LANGUAGE is used for each
language to set the corresponding language context so that the associated description can be read out.

#ENDWITH_LANGUAGE "turns" this language "off" again. The language in effect before the #.0O0P
statement is again current.

10.3.13 #REM

This statement lets you define areas in your template that should not be processed. You can insert
comments, notes, and so on in these areas. Developers can use this option to hide code during the
development phase.
Syntax:

#REM ... #ENDREM

Example: #REM template created by developer X #ENDREM

These comments are also not visible in the View Source window in the browser.

10.4 Error TLE

10.4.1 #FormError

Use this statement to query whether the form last called contains errors. The function returns a value of
true if an error has occurred.

Syntax:
#FormError

Example: #1IF(#FormError) Please correct your input! #ENDIF

10.4.2 #FormError_<InputField>
You use this statement to query errors in entry fields.
Syntax:

#ForméError_c<inputfieldnames

Code example 39illustrates a typical application.

#LOOP (#Products)
<input name="Price"
#1F(#FormError_Price)
Style=""color:red"”
#ENDIF
Value="#Price" />
#ENDLOOP

Code example 39: example of #FormError_<InputField>

ePages 5 - Design and Cartridge Development Guide Page 69

TLE Error TLE

Here, each product price is listed sequentially in entry fields. If an error occurs for a product in the Price
field, the corresponding entry field is highlighted in red.

10.4.3 #FORM_ERROR

This statement functions exactly like #FormError_<InputField> but is used when the ERROR_Parameter is
first known at runtime.

Syntax:
#FORM_ERROR("<inputfieldnames”)
#FORM_ERROR (tvariablename)

The example in Code example 39 with a known parameter is as follows:

#LOOP (#Products)
<input name="Price"
#1F(#FORM_ERROR(*'Price'™))
Style=""color:red"
H#ENDIF
Value="#Price" />
#ENDLOOP

Code example 40: example of ## ORM_ERROR

In Code example 41, you see an example for using parameters that are first known at runtime.

#1F(#FORM_ERROR(#Attribute_Alias)) DialogError#ENDIF

Code example 41: example of ##fORM_ERROR and a variable parameter

10.4.4 #FormErrors.<...>

The 7LE#FormErrors contains all the information necessary to generate a meaningful error message.
Usually the Reason parameter is used to show an error description.

Syntax :

#ForméErrors.Reason
Example: #1IF (#FormErrors.Reason EQ "FORMAT_NOT_INTEGER'™) {FormatNotlnteger} #ENDIF
For more details, see £rror Handling Templates, on page 99.

10.4.5 #WITH_ERROR

Use this statement to re-incorporate entries from erroneous forms into the template. The important thing is
that the field name is identical to the TLE.

Syntax:

#WITH_ERROR(<logical expression>) ... #ENDWITH_ERROR

H#WITH_ERROR(#FormError)
<input name="Login" value="#IlF(#Login)#Login#ENDIF" />
#ENDWITH_ERROR

Code example 42: example of #WITH_ERROR

Page 70 ePages 5 - Design and Cartridge Development Guide

Formatting TLE Variables TLE

Make sure that the replacement occurs only in the current context. If the context is changed, for example,
with #LOOP or #WITH, you have to reset #WITH_ERROR.

10.4.6 #ERROR_VALUE

Use this function to handle errors of selection fields. This allows the code to be much easier and more
effective to read.

Syntax:

#FUNCTION("ERROR_VALUE", #ValuelfError, #ValuelfNoError)

#WITH_ERROR(#FormError)
<input name="Alias" value="#Alias'">
#LOCAL('RefUnitID™, #FUNCTION('ERROR_VALUE"™, #RefUnit, #RefUnit.ID))
<select name="RefUnit" size="1">
<option value=""">{EmptyEntry}</option>#LOOP(#Shop.Units)
<option value="#ID"#IF(#RefUnitID AND #RefUnitID NEQ #ID)
selected=""1"#ENDIF>#NameOrAl ias</option>#ENDLOOP
</select>
#ENDLOCAL
#ENDWITH_ERROR

Code example 43: example of #£RROR_VALUE

Depending upon which result the error function provides, a valid value is transferred to the calling variable.

10.5 Formatting TLE Variables

TLE variables can be formatted for display on a Web page.
Formatting statements are attached to TLE variables using square brackets:
#TLE-Variables/<formaftting instructionss]

You can use the following formats:

Table 8: Formatting statements for TLEs

Formatter [Description Example Display

[money] The value is displayed as a price. The #Price[money] 25,95 €
currency format used is the one specified by $25.95
the current user preferences.

[float] The value is displayed as a decimal number. |#Quantity[float] German: 5.325,26
The format used is the one specified by the English (US): 5,326.26
current user preferences.

[integer] The value is displayed as a decimal number. [#Quantity[integer] |German: 5.325
The format used is the one specified by the English (US):5,326
current user preferences, however without
decimals.

[LC] LowerCase #Name[LC] DOE
All the letters in a character string are - doe

returned as lower case letters.

[LCFIRST] Only the initial letter of a character string is [#Name[LCFIRST] DOE
displayed in lower case. - dOE

ePages 5 - Design and Cartridge Development Guide Page 71

TLE Formatting TLE Variables

Formatter [Description Example Display

[uq UpperCase #Name[UC(] doe
All the letters of a character string are - DOE
returned as upper case letters.

[UCFIRST] Only the initial letter of a character string is [#Name[UCFIRST] doe
displayed in upper case. - doe

[space:n] The character string in question is displayed [#Name[space:12] |Doe = |Doe |

[space:-n] |either left-aligned or right-aligned and is Elbe
filled with as many empty spaces necessary, ~|Elbe |
either to the right or to the left, until the total
number of characters correspond to the doe
number indicated in the brackets. #Name[space:-12] [=>| doe|
The n functions here as a placeholder for an Elbe
integer. This format makes sense only for 2| Elbe|
plain text output, not for HTML.

[slice:n] The character string to be displayed is cut off |[#Name][slice:9] DOE

[slice:n] and ended with three periods (...). The "n" - RUBENS...
here is a placeholder for the number of #Name([slice:-9] - ...ermann
positions in the length of the result. The three
periods are included in the character count. If
the character string is shorter than n, no
periods are added.

If you have a negative parameter, it will be
counted from the end of the string, the three
periods (...) will be counted.

[webpath] |This indicates the path to the requested files |#Image[webpath] |/WebRoot/Store/SF/Sh
on the server. The prerequisite for this is that ops/Demoshop/.../exa
the attribute to be displayed is of type file or mple.gif
language-dependent file.

[html] Replaces ©»&" with the corresponding HTML |#Text or #Text[html]
entities (< > & "). This format
is the default format for all TLE variables.

[nohtml] Removes all HTML tags (replaces them with |#Shop.Slogan[noht
spaces) ml]

Entities are changed ü -> i

[0] The TLE variable should not be formatted. If |#text[0]
the TLE contains content from entry fields
that is already formatted in HTML, for #IF
example, this formatting should not be (#Shop.BasketOverT
changed. This affects all the fields that have |ext)
been marked as HTML fields in the back #Shop.BasketOverT
office. ext[0]

#ENDIF

[uri] All non-alpha-numeric characters in the #Path[uri] /Shops/Demo.Shop
variables values are URL-coded. Non-alpha- - %2FShops%2F
numeric characters are any character except Demo%2EShop
0..9,a..z,A..Z,"_".

[url] All non-alpha-numeric characters in the #Path[url] /Shops/Demo.Shop
variables values are URL-coded. Non-alpha- 2>
numeric characters are any character except /Shops/Demo%2EShop
0..9,a..z,A..Z," _"and "/".

[date] A date TLE is displayed in the currently-set |#Now[date] Oct 5, 2005 11:49:33
date format (only date). AM

- 05.10.05

Page 72

ePages 5 - Design and Cartridge Development Guide

Operators

TLE

Formatter |Description Example Display
[datetime] |A date TLE is displayed in the currently-set |#Now[datetime] Oct 5, 2005 11:49:33
date format (date and time). AM
- 05.10.05 11:49
[time] A date TLE is displayed in the currently-set |[#Now[time] Oct 5, 2005 11:49:33
date format (only time). AM
2 11:49
[px] For TLEs with size information (length and so [#ContentParagraph (10
on.) Size[px] - 10px
This is used for style sheet information.
lis] For TLEs that are used within a JavaScript onclick= | Don’t know
character string. Here, quotation marks and |”changeSample(- | Don\’t know
line breaks must be tagged with control '‘#Description[js]’);”
characters.
[preline] Line breaks are converted to
 tags. #CustomerComment|Hello,
[preline] Please deliver
punctually this time!!!
Regards,
Mr. Customer
9
Hello,

Please deliver
punctually this
timellkbr /»
Regards,

Mr. Customer
[neg] Displays values in the negative #Quantity[neg] 5
>-5
#Money[neg,money] [25.95 €
> -25.95 €

Formatters can be separated by commas, for example

#Shop.NameOrAlias[-20, 30]

This will be interpreted as follows:

Through the first formatting -20 of #Shop.NameOrAlias/-20] a string is returned that is 20 characters too
long. The following characters are filled up from the front:

Milestones"

Through the second formatting 30the string is extended to 30 characters. This is displayed in the browser

as follows:

Milestones

| Caution:You are responsible for a logical combination of formatters. No plausibility test is done.

10.6 Operators

You can use the following operators in TLE statements:

ePages 5 - Design and Cartridge Development Guide

Page 73

TLE

Table 9: operators for comparing numerical values

Operators

Operator |Description Description Code example

EQ Equal Valid if parameters are #IF(#Class.Alias EQ "Category")
(EQual) equal

NE Not equal Valid if parameters are not |#IF(#Class.Alias NE "Category")
(Not Equal) equal
Concatenation The linking of character "Mon" . "day" = "Monday"

strings
IN Contained in

Table 10: operators for comparing numerical values

Operator

Description

Description

Code example

NEQ Numerically equal Valid if numerical IF@#BillingAddress.ID NEQ #ID)
== (Numerically EQual) |parameters are equal IF(#BillingAddress.ID == #1D)
NNE Not numerically Valid if numerical IF(#BillingAddress.ID NNE #ID)
I= equal parameters are not equal |IF(#BillingAddress.ID ¢ #ID)
(Not Numerically
Equal)
NLT Numerically less than|Valid if numerical IF#AmMount NLT #PC)
< (Numerically Less parameter 1 is smaller than|IF(#Amount < #P(C)
Than) parameter
NLE Numerically less than|Valid if numerical IF#Amount NLE #PC)
(= or equal parameter 1 is smaller than|IF(#Amount <= #PC)
(Numerically Less or |or equal to parameter
Equal)
NGT Numerically greater |Valid if numerical IF#Amount NGT #PC)
> than parameter 1 is greater than |IF(#Amount > #P(C)
(Numeric Greater parameter
Than)
NGE Numerically greater |Valid if numerical IF#Amount NGE #PC)
=) than or equal parameter 1 is greater than (IF(#Amount => #PC)
(Numerically Greater |or equal to parameter
or Equal)

Table 11: Operators for combinin

conditional statements

Operator |Description Description Code example
NOT Not Valid if a value is not set |[#IF(NOT #Gender)checked="checked"
#ENDIF

OR Or Valid if an expression is #IF(#Attribute.IsVisible OR #Value NE "")
valid

AND And Valid if all expressions are |#IF(#Attribute.lsVisible AND #Value NE "")
valid

DEFINED Defined Valid if a variable is #IF (#DEFINED#Name))
present.

Note: The operator "NOT" has the highest priority, that is, it is used before all other operators.

Page 74

ePages 5 - Design and Cartridge Development Guide

Creating a TLE Function TLE

Table 12: mathematical operators

Operator |Description Description Example
+ Plus (addition)
Minus (subtraction)
* Multiplication
/ Division
% Modulo Remainder of integer 5%3=2

division

10.7 Creating a TLE Function

If you would like to provide your own TLE functions, you need to know how cartridges are created and how
hooks are registered. For more details, see Cartridges, on page 81 and Hooks, on page 1089.

In order to generate a TLE function, see #ZFUNCTION, on page 68, or #BLOCK, on page 68you need to not
only implement the function but also register it in the TLE processor by registering it in a hook in the TLE
processor.

In order for you to better understand, we will use the following example. The properties of an object called

CD are to be displayed in a template. You can query attributes for this such as CD/D, Titleand Price directly
from the database. A further property Review must be read out from an external source. For this, create the
function CDReviewfor using in the following form in the template:

#FUNCTION(''"CDReview', #CDID)

Start implementing the function, see Code example 44.

package COMPANY::MyCartridge::API::TLE: :CDHandler;
FunctionHandler

sub CDReview {
my $self = shift;
my ($Processor, $aParams) = @_;

my $CDID = $aParams->[0];
my Review = get("http://cdserver/review.cgi?id=$CDID");
return $Review;

sub RegisterHandlerProc {
my ($Params) = @_;

__ PACKAGE__->new()->register($Params->{"Processor"});
return;

sub register {
my $self = shift;
my ($Processor) = @_;
GetLog->debug("CDHandler.register®);

$Processor->registerHandler("FunctionHandler®, $self, "CDReview");
return;

Code example 44: Implementation of a TLE function

ePages 5 - Design and Cartridge Development Guide Page 75

TLE Creating Dynamic TLE Variables

When doing this, please note the following:

- Forthe package name, you should observe the naming convention:

package <company name>::<cartridge name>::APIl::TLE: :<merchant name>

- The function name in the PERL code and for the TLE function must correspond.
- The function must be registered in the TLE processor. To do this, use the function register. For an
example of code, see Code example 44.

A hook for TLE functions is created in the TLE processor. New functions have to be registered in this hook.
Registration is carried out in the HooksTLE. XML file in the cartridge and with the following syntax:

<?xml version="1.0" encoding="UTF-8"?>
<epages Cartridge="COMPANY: :MyCartridge'>

<Hook reference="1" Name="TLEProcessorRegistration'>
<HookFunction
FunctionName=
"COMPANY: :MyCartridge: :API::TLE: :CDHandler: :RegisterHandlerProc"
OrderNo="1" delete=""1" />
</Hook>

</epages>

Code example 45: registering the function in the hook in the TLE processor

When executing a hook, if the TLE processor determines that a corresponding function is registered, it
checks whether this function is used in the template and registers it.

A special TLE function case is the #BLOCK statement, see also #BLOCK, on page 68. At this point, in
addition to the function parameters for the HTML source code between #B8LOCK and #ENDBLOCK ,
$cTemplateis applied and processed as an additional parameter:

my ($Processor, $aParams, $aTemplate) = @_;

Use the Diagnostics cartridge to read out all the current TLE functions.

10.8 Creating Dynamic TLE Variables

A dynamic TLE variable is comparable to the TLE function. In contrast to the TLE function, no parameters are
passed here:

#<dynVarName>

Like the TLE function, a TLE variable needs to be registered in the hook in the TLE processor, in addition to
being implemented.

We will extend the TLE function example by introducing two variables, one for displaying the CD of the day,
CdOfTheDay, and one for displaying the Top Ten, TopTen. They can then be used in the template as follows:

#CdOfTheDay
#TopTen

Start again with the implementation, see Code example 46.

Page 76 ePages 5 - Design and Cartridge Development Guide

Creating Dynamic TLE Variables TLE

package COMPANY::MyCartridge::API::TLE: :CDHandler;

sub

sub

sub

tle {
my $self = shift;
my ($Processor, $TLEName) =

iT($TLEName EQ "CDOfTheWeek®) {
return get("'http://cdserver/cdoftheweek.html™);

3
elsif($TLEName EQ "TopTen™) {
my @TopTen;
foreach my Position (1..10) {
push @TopTen, {
Artist => "Artist",
Title = "Title",
Position => $ Position

}:
}
return \@TopTen;

return undef;

existsTLE {

my $self = shift;

my ($Processor, $TLEName) =

GetLog->debug("‘CDHandler. eX|stsTLE($TLEName)");

return (defined $self->tle($Processor, $TLEName)) ? 1 : O;

register {

my $self = shift;

my ($Processor) =

GetLog->debug('CDHandIer register”);

$Processor->registerHandler("VariableHandler®, $self, "CDOfTheWeek");
$Processor->registerHandler("VariableHandler®, $self, "TopTen®);
return;

Code example 46: implementing TLE variables

When doing this, please note the following:

For the package name, you should observe the naming convention:

package <company name>::<cartridge name>::APIl::TLE: :<merchant name>

The function for determining variable contents needs to be called #/e.

The function exists7LE must be implemented. This checks whether a variable for the name indicated in
the template exists. If this is the case, the value is determined and displayed. Otherwise, the original
expression in the template is used accordingly. For example, if ZFFEEBB s in the template, a check is
made of whether a dynamic variable has been specified for this name. If the result is negative, the
entry is interpreted as a colour code.

The function must be registered in the TLE processor. To do this, use the function register. For an
example of code, see Code example 4é.

The function must be registered in the hook in the TLE processor. For more on this, see Code example
45, on page 76.

The #JopTen can be displayed using the #. OOPfunction.

ePages 5 - Design and Cartridge Development Guide Page 77

TLE Creating a TLE Formatter

10.9 Creating a TLE Formatter

The process for creating TLE formatters is the same as for TLE functions and dynamic TLE variables.

As an example, we would like to create a formatter for displaying prices in the xx,- € format, that is, without
decimal places, for example. 19,- €. This would be used in the template as follows:

#Price[nodec]

Start again with implementing the formatting function, see Code example 47

package COMPANY::MyCartridge::API::TLE: :CDHandler;

;ub Format {
my $self = shift;
my ($Processor, $Format, $Value, $TLEName) = @_;

iT($Format EQ "nodec”) {
my $NoDec = int($Value);
return "$NoDec,-";

sub register {
my $self = shift;
my ($Processor) = @_;

$Processor->registerHandler("FormatHandler®, $self, "nodec®);
return;

Code example 47: implementing a TLE formatter

When doing this, please note the following:

For the package name, you must observe the naming convention:

package <company name>::<cartridgename>::APIl::TLE::<merchant name>

- The function for formatting the variables needs to be called Format.

- The function must be registered in the TLE processor. To do this, use the function register. For an
example of code, see Code example 47.

- The function must be registered in the hook in the TLE processor. For more on this, see Code example
45, on page 76.

Page 78 ePages 5 - Design and Cartridge Development Guide

Part lI:

Cartridge Development

Cartridge Structure Cartridges

11. Cartridges

ePages 5 is based on cartridges. Cartridges are software modules which provide functions and design and
are connected via dependencies and inheritance mechanisms. These modules communicate with each
other and with other applications via the API.

For complex changes or function extensions, you should, as a developer, always create cartridges and
integrate them into the system. This will make sure your system remains updateable.

Practical examples for the creation of cartridges can be found in the appendixes in.

11.1 Cartridge Structure

The default cartridges are found in the following ePages 5 installation directory

%EPAGES_CARTRIDGES%/DE_EPAGES

Every cartridge has a directory with the name of the cartridge in which all necessary files are saved. The
following structure is used:

=) Cartridges
* | DE_EPAGES
Sl=]vendor |
=l | CartridgeName
() API
+ | DAL
) Data
) Database
) Doc
) Documents
) Hooks
) Models
+# | Patches
) Scripts
i
+#) Templates
) Ut

F
£3

Figure 20: cartridge structure

You should create a separate directory for every project or company next to /DE_EPAGES called the Project
or Vendor Directory.

%EPAGES_CARTRIDGES%/<vendor>

All the cartridge that belong to the particular project are created in that directory. A separate directory is
created for each cartridge with the name of the cartridge:

%EPAGES_CARTRIDGES%/<vendor>/<cartridgeName>
It can contain the following subdirectories:

Table 13: important cartridge subdirectories

Subdirectory Content

API Contains PERL modules that offer public functions.
Public means that the functions can also be used by modules of other cartridges.
These functions should therefore be well-documented.

ePages 5 - Design and Cartridge Development Guide Page 81

Cartridges Cartridge Structure

Subdirectory ’Content

DAL Database Abstraction Layer - functions that execute database functions

When using the PowerDesigner from Sybase, the files are automatically generated.
Provides a data cache, in which the results of repeated database queries are
cached.

Data Data for layout and control of the application, such as images, styles, templates,
and configuration files for automatic processes.

Data/Private Contains data that is only accessed by the application server, for example, import
files or templates. During installation, these data are copied to the
%EPAGES_STORES%/Store directory. Templates that overlay original templates are
copied to the "overlay directory"
%EPAGES_STORES%/Store/Templates/DE_EPAGES/<originalcartridgenames/Temp!
ates. For more on this, see Overlaying Templates, on page 35.

These templates must be placed in the directory:
Data/Private/Templates/DE_EPAGES//<originalcartridgename>/.

Store is the business unit where the cartridge is installed

Data/Public Data that the Web server accesses, for example, images and styles. These files are
copied to the cartridge directory %EPAGES WEBROOT%,/Store during installation.
Data/Scheduler All files for scheduled processes, such as automatic availability updates. This

includes the files for executing tasks and the corresponding configuration files. The
files are saved according to operating system and user-specific criteria. For more on
this, see Scheduler, on page 119.

Data/WebRoot Here you can enter additional Help files that explain the functions of the cartridge,
in addition to the standard online Help. For more on this, see /ntegrate your own
online Help, on page 165.

Database

Database/Sybase Files to generate the necessary tables and to define stored procedures.

Database/XML Import files in XML format. See /mport Files, on page 113.

Doc APl documentation of the PERL modules
For further information on this, refer to the use of /nstalling - nmake, on page 85
with the target sourcedoc.

Documents Additional documents for developers. A description can be shown in each cartridge
of the Diagnostics Cartridge. In the Documents directory, the file /index. Atm/ must
be created with the correct content.

Hooks PERL modules that offer functionality that are called by hooks - see Hooks, on page
109.

Models Database model of the cartridge which was created with PowerDesigner. The model
is saved here as a .pdm.

Patches Files that are used for patching. For more on this, see Patching Cartridges, on page
161.

Scripts PERL scripts that are executed via the command prompt. These are functions that,

for example, are started as jobs or serve as Help functions for Import/Export,
deleting of database objects, and so on.
For more on this, see Scheduler, on page 1189.

t Test cases for API functions

There should be at least one test case with an API call and function test for every
API function. In addition, test files, for example, images or .xml files should be
saved here. For more on this, see. /nstalling - nmake, on page 85 - Target test.

Templates All templates that are necessary for the function of this cartridge and that do not
overwrite any original templates.

ul Modules that provide functions for interacting with the user (input, output);
Usually private functions that are not publicly visible

Page 82 ePages 5 - Design and Cartridge Development Guide

Creating a Cartridge Structure Cartridges

11.2 Creating a Cartridge Structure

You can create cartridges manually or call the cartridge installer. This installer creates the necessary
structure and the most important files. We recommend using the CreateCartridge script to avoid the errors
which can occur when manually creating the structure and files.

You call the PERL script CreateCartridge.p!as follows:

perl %EPAGES_CARTRIDGES%/DE_EPAGES/Cartridge/Scripts/CreateCartridge.pl
<vendor>: :<cartridgeName>

This installs the <vendon directory in the following cartridge directory of the ePages installation:

%EPAGES_CARTRIDGES%

In the «vendor directory, the new cartridge directory <cartridgeName»is created for the new cartridge. All
necessary directories and files are generated in this subdirectory. You need to customize the content
according to the requirements of your cartridge.

The Makefile.plfile is also created in the root directory of the new cartridge. You use this to then generate
the makefilefile. See/nstalling - nmake, on page 85.

You need to customize the structure that creates individual file types and their corresponding directories.
When you do this, you also need to take the functional dependencies and the purpose of the cartridge into
account. For more information, refer to Cartridge Structure, on page 81 and pay special attention to the
usage examples and the default cartridges.

11.3 Installer / Cartridge.pm

Another important file that is automatically generated in the /AP/ directory is Cartridge.pm. This file
defines among other things which functions are to be executed when the cartridge is installed. The
installer that controls if and how certain files can be copied or imported into the database is also
indicated.

The installers are structured as hierarchies and inherit the functions. A list of installers is shown in 7able
14. The installers are shown in their linear dependency. The basis is the Base/nstaller. An overview of the
individual functions of each installer is available in the APl documentation of the packages specified.

Table 14: installers

installers Package /

Description

Baselnstaller DE_EPAGES::Core::API::Baselnstaller

Fundamental and all necessary functions for installing/uninstalling patches and
cartridges; Copy function, import function; sets the current version number of the
impacted cartridge

Filelnstaller DE_EPAGES::Core::API::Filelnstaller

Copying and deletion of files from the subdirectory /Data in the correct portions of
the file system.

XML Installer DE_EPAGES::XML::API::XMLinstaller

Functions to read and edit XML files that contain information about cartridge
dependencies and patch functions. Dependencies.xml, , Patch.xm/!

Databaselnstaller DE_EPAGES::Database::API::Databaselnstaller
Functions for creating and editing database directories and patches of the
corresponding sqg/files

ePages 5 - Design and Cartridge Development Guide Page 83

Cartridges

installers

Installer / Cartridge.pm

Package /

Description

Triggerinstaller

DE_EPAGES::Trigger::API:: Triggerinstaller
Functions forinstalling, deinstalling and patching files of the type Hooks* XML
with final cache reset

Cartridgelnstaller

DE_EPAGES::Cartridge::API::Cartridgelnstaller

Functions, among other things for the registration of a cartridge in a store database,
to update the cartridge status in the cartridge table, to determine dependent
cartridges of for updating the database structure of this cartridge.

Obijectinstaller

DE_EPAGES::Object::API::Objectinstaller
Functions for installing, uninstalling, and patching objects, classes, and attributes;
Managing files of type Attributes* xml

Permissioninstaller

DE_EPAGES::Permission::API::Permissioninstaller
Functions for installing, uninstalling, and actions and permissions Managing files
of type Actions*xmland Permissions* xml

PresentationInstaller

DE_EPAGES::Permission::API::Presentationinstaller
Functions for installing, uninstalling, and PageTypes and forms; Managing files of
type PageTypes*.xmland Forms*xml!

Shoplnstaller

DE_EPAGES::Shop::API::Shoplinstaller
Functions for installing, uninstalling features; Managing files of type features*xml!

Designinstaller

DE_EPAGES::Design::API::Designinstaller

Functions for installing and uninstalling design and navigation elements as well as
e-mail forms and pre-defined search instructions; Managing files of type
NavBars*.xml, NavElements*xml, Search*xml, MailTypeTemplates*.xm/

Shippinglnstaller

DE_FPAGES::Shipping::API::Shippinginstaller
Functions for installing, uninstalling delivery methods; Managing files of type
Shipping*.xml

Paymentinstaller

DE_EPAGES::Payment::API::Paymentinstaller

Functions for installing, uninstalling, and payment methods and their respective
logos and logo links; Managing files of type PaymentLogos* xm/abd
Paymenttypes* xml

When a cartridge is automatically created, the default installer is the design installer. See Code example

48.
8package Training: :AddBatchAction: :API: :Cartridge
8state public
H e~

8description m

ain cartridge class for install/patch/uninstall

package Tra inin

use strict;

g: :AddBatchAction: :APIl: :Cartridge;

use base gqw (DE_EPAGES::Design::APIl::Designinstaller);

Code example 48: definition of the cartridge installer

The Designlinstaller m

akes sure that all the common files are copied to the corresponding locations or are

imported into the database, in as far as they are set up in the cartridge.

Note: The Presentationinstallermust be used to install cartridges that must be installed on the site.

Page 84

ePages 5 - Design and Cartridge Development Guide

Installing - nmake Cartridges

11.4Installing - nmake

Forinstallation and registering the cartridge in the system, nmake s used for Windows and make for Linux.
Necessary steps like compiling, linking, copying files, and so on are performed automatically or via scripts.
The prerequisite for this is the makefilefile that must be generated for every cartridge and that contains the
corresponding operating system-specific directions.

First generate the makefile for your cartridge. Open the console in your cartridge directory and enter the
following command:

perl Makefile.pl

After the command is executed, the makefilefile is created in the same directory.

Note: Makefile.p/generates an operating system-specific makefile. I

In order to install a cartridge, the makefile with the target parameter /nstallmust be executed for a specific
business unit, for example:

nmake install STORE=Store

(Store»is the logical name for the database of the business unit. After finishing, the cartridge functions are
known to the system and can be used in the business unit for which the cartridge was installed.

Additional actions can be executed via the nmake depending on the target indicated by the call. The
general call for the nmake via the Windows command line therefore appears as follows:

nmake <target> STORE=<Store>

When this is done, the following logical targets can be used:

Table 15: Targets for nmake

Target ‘Description

install The cartridge or rather its functions are installed in the database and are thereby
made known to the system. The necessary tables and stored procedures are also
created. Furthermore, additional data are imported when necessary. The files are
copied into the corresponding directories.

If the new cartridge is dependent on other cartridges and these cartridges are not
yet installed, they are then installed.

uninstall All cartridge-relevant entries are removed from the database. Cartridges that are
dependent on these entries are also uninstalled.

clean Creates a "delivery ready" cartridge structure. The structure is cleaned, all the
necessary files remain intact, and superfluous files are deleted.

Files with the *.pdb extension are deleted. In addition, the makefile file and the
directory /Generated are removed.

register This makes cartridge functions known to the central administration database (site)
where they can also be displayed.

After registering, the cartridge features are managed by the business administrator
and assigned to individual shop types

unregister The cartridge entry is removed from the site database.

test All test cases from the /fdirectory are executed. If an error occurs, an error
message is displayed.

ePages 5 - Design and Cartridge Development Guide Page 85

Cartridges Uninstalling

Target ’Description

sourcedoc Generate online documentation from the corresponding commented PERL modules
of your API functions

This creates a directory /Doc in which the Help files are generated in HTML format.
Help can only then be generated if the modules have not been encrypted. For more
on this, see Encryption, on page 89.

generate Generation of Perl code, SQL files for tables and stored procedures and creation of
XML import files from the data model.

The prerequisite is an existing database model in a *pdm file generated by the
PowerDesigner.

A /Generated directory is created containing the subdirectories /APJ, /DAL,
/Database, and /twith the corresponding files. These files can be copied from the
/Generated directory into the corresponding cartridge directory and further edited.

11.5 Uninstalling

To uninstall a cartridge, open the console in your cartridge directory and enter the following command:

nmake uninstall STORE=Store

Storeis the logical name for the database of the business unit in which the cartridge is installed. All
database entries that contain the XML definition for the attribute delefe="1"are deleted.

All files that were copied to the corresponding overlay directory are deleted. For more on this, see
Overlaying Templates, on page 35.

If, after uninstalling, content or elements of the deleted cartridges are still shown, they may still be in the
cache. Check and empty the following caches if necessary:

- Browser cache
- Optimisation in MBO
- %BEPAGES STATIC% directory

11.6 Copying Cartridge Directories

Changes in a cartridge require a long uninstall and a new install of the cartridge. If the changes have only
been performed in the /Data directory, copying the files the respective places is enough. There are two
ways to do this. With this, you can copy the files from the /Data directory for a specific cartridge into the
corresponding business unit. The script is called as follows:

perl C:\epages5\Cartridges\DE_EPAGES\Installer\Scripts\copyCartridgeData.pl
[options] [flags] cartridges

Options are:

- -passwd: Database user password

- -storename: Name of the database where the cartridge is installed

- -type: Type of cartridge data (Private, Public, WebRoot, Scheduler)
Flags:

- -help : Shows which options are available

Example:

Page 86 ePages 5 - Design and Cartridge Development Guide

Back Office Extensions

Cartridges

perl C:\epages5\Cartridges\DE_EPAGES\Installer\Scripts\copyCartridgeData.pl
DE_EPAGES: :Design -storename Store -type Public

11.7 Back Office Exte

nsions

In addition to changes in the store front, function extensions in the back office are among those
requirements requested most often. Here, the functions in various levels that are nested in each other are
made available. Up to five levels can be defined, whose order and relationship to each other is also visible

in the back office pages layout. See Figure 21.

T Products | (B

Categories

2 Design | w9 Marketing | 4,

@ Help 1

Settings

epages @

Product

@& Milestones

number

Text search

Language Cisplay per page

| [english] [10Resuks]

4 Homne page

Shop-Ad trats
T —— Products

@ Sian out

1) optimisation (inactive)

¥ products

General &

=Y

Product number

122456 DEI‘J

My bundle

Listprice A7

100,00 €

Stock level 27

be_40401 5

Berghsus Paclite Jacket - Men

199,95 £

be_40402 5

Berghaus Paclite Jacket - Women

199,953 £

=arch statistics

vees

€g_0100504001

Campingaz Tuister 270

272.95 €

roduct settings

€g_0101004270

Campingaz CW270 Valve Gas Canister

2,95 £

el e

I MEcat import 3 l

cg_0101104470

Campingaz CV470 Valve Gas Canister

F.O5 £

de_3201212002

Deuter Hydre 2,0 A
-r

74,95 €

de_3203104010

Ceuter Kangaroo

99,95 €

The tray is empty.

1CIECE

=

de_3206199010

Deutar Teddy Bear

26.95 £

eg_1000111010

Eurska El Capitan IV

239.95 £

O Oogooooooo

+# Favorites
b Mew Ideas at the Mi.

v Invoice - General

e«

L |

K ¢ [1]123 3 u Humb

FAF T ()

r Remove all favaorites

+ Products - General

®

ol
L

®

v Clear history

Exerute

Add to tray

Set visible

Set not visible
Cuplicate

Aszign to catagory...
Assian product portals...
Delete

Figure 21: Function levels in the

The following areas are suitable

back office

for integrating new functions:

Table 16: Function areas in the back office

Area ‘Description ‘
1 Main navigation points are separate functional areas with no reference to
Main navigation points the other managers with their own encapsulated functionality.
(Manager) If you would like to add a new logical administration area to the
application, create a new main navigation point.
Example: Vendor management
2 Navigation boxes are integrated into the left navigation areas of each

Navigation Box in the Left
Navigation Area

module and make various blocks of functions available. There are two
different kinds of navigation boxes: the first represents module-
dependent functionality, such as the context menu, and general functions
such as the Tray or Favourites.

Example: Box for changing the language or to show the date and time

3
Menu Entry in a Navigation Box

Further functions in individual navigation boxes
Example: Link to the home page or to the intranet in the Administrator
menu

Tab

Functionality in content area, usually organized in tabs.
Example: Tab for statistics in the Orders module

ePages 5 - Design and Cartridge Develo

pment Guide Page 87

Cartridges Back Office Extensions

Description

5 Extension of batch processing commands for a table
Batch processing commands |Example: See below

A practical example for extending the back office functionality through an additional batch processing
command is available in UE 7: New Batch Processing Commands in the MBO, on page 195.

Page 88 ePages 5 - Design and Cartridge Development Guide

Encryption Creating a Distribution

12. Creating a Distribution

One important reason to encapsulate functional extensions in a cartridge is to protect the ability to
upgrade the system. An additional reason is to provide functions that can be used by other systems. This
means the cartridge need to be easily transferable and installable.

For this, you create a distribution. A distribution is a cartridge with all of the files necessary for its
functions. These files only need to be installed on the target system.

You can create this type of distribution using nmake with the target c/ean. Once you have successfully

tested your cartridge on your system and want to generate a distribution, enter the following command in
the console in the main directory of your cartridge:

nmake clean
This cleans the cartridge structure by deleting all the unnecessary files.
The prepared cartridge can now be copied and installed on the target system.

If you would like to provide a range of functionality, but at the same time would like to protect the source
code from unauthorized reuse or alteration, you can encrypt the source code files:

12.1 Encryption

You can use the encryption tool to encrypt the source code. The program is called encrypt.exeand is
located in the following directory:

%EPAGES%/bin
Enter the following command to encrypt your files:
encrypt [-s] <perlmodul>_pm
You can use the -s parameter to remove comments from the code during encryption. £ncrypt.exe needs to

be execute for each individual file. As a result, the encrypted file werimodules.pmis created. When calling
the program without parameters, the possible parameters and their usage is shown.

Caution: encrypt.exe does not create a backup file of the file which is encrypted. We therefore strongly
recommend that you back up all files before you begin encrypting.

ePages 5 - Design and Cartridge Development Guide Page 89

Part lli:

Additional Concepts

Creating Features

13. Creating Features

Features are functions that can be made available for the shop types available or put together into feature
packs. Creating and activating of individual features is the task of the business administrator.

For this, these functions need to be defined and modified in the source code and in the database. Perform
these steps to create such an offer:

1. Define the feature. In the corresponding cartridge in the /Database/XML directory, create the
Features.xml file or extend an existing one.

2. Integrate the feature check in the PERL code or in the template source code according to your

requirements.

Execute nmake installfor your cartridge. This imports the feature into the database.

4. Execute nmake registerforyour cartridge. This makes the feature known in the administration
database of the business administrator. He can then select this feature for his shops

w

The following example demonstrates the procedure in more detail:

Each merchant can process a certain number of products in his shop. This number is a feature and can
therefore be set differently for various shop types.

This feature is defined in the following file:

%EPAGES_CARTRIDGES%/DE_EPAGES/Product/Database/XML/Features.xml

see Ffigure 22.

<Feature Alias= Products cartr'ldge 'DE_EPAGES: :Product” delete="1" Position="30">
<attributevalue Name="Name Language en" value="Products” />

<Attributevalue Name="Name" Language="de"” Vvalue="Produkte” /=

<Attributevalue Name="Description" Language="en" value="Number of Products" />

<Attributevalue Name="Description"” Language="de" wvalue="anzahl von pProdukten" />

</Feature>

Figure 22: Definition of the feature in the XML file

A MaxValueis indicated for every feature. If you set MaxValue="1", this means that this feature can be
activated (7) or deactivated (0). If a value greater than 1 is set, this feature is available as often as
indicated. In this way, the number of products is also defined as a feature. This restricts how many
products are allowed to be created in the shop. For example, MaxValue="100000"means that the user can
create 100000 products.

In the display template for the merchant back office, a request is made to determine whether the feature is
set or what its maximum value is:

—
<tre
<td class="Image >

D i)

<img src= #StureRmut/Bﬂ/Tc(Ls/mbm manager_ico_1_products_disabled. gif" alt="{Products}" title="{Products}" /=</sp
FECTE

<img src="#5toreroot/BO/1cons/mbo_manager_ico_l_products.gif"
#ENDIF

<h3>

#IF(NOT #Shup FeatureMaxvalue.Products)

{Products}</span=

#ELSE

{Products}
EENDTE

Figure 23: Feature checking in the template

Depending upon how the business administrator set the value for the feature, products may be able to be
added. In the following, you can see how the business administrator can edit the feature values:

ePages 5 - Design and Cartridge Development Guide Page 93

Creating Features

w Shops % Shop Types E! Databases

£ pistributor Administrator General H Features e]
&= Log OFF

Max. Count Name Description
® ves O o Sub-Categories Creating sub-categories to structure products and pages
100 0..100000 Pages Mumber of pages which can be included in categories
— ———
Number of Products] I
—
20 [0..1000) Product Types Number of user-defined product types
{0..1000) Product Attributes Number of user-defined product attributes
(0..20) Variation Attributes for Products The number of attributes that can be used to create product
N wvariations
@ ves O o Attachments for Products Enable user-defined attributes of type "File" for products
® ves O no Import and Export Product data can be imported and exported using the comma
separated values (CSV) format
@ TS O No Promotional Items Special presentation and placing of promotional products
® I3 Product Image Optimization Multiple product views can be automatically created during
Yes Mo =
image upload
@ O Product Slide Show Products can be presented with slide shows
Yes Mo
@ Yes O o Detziled Product Search Search in shop with additional parameters
@ O Price Lists Price lists with bulk and normal discounts can be created.
Yes Mo
@ ves O No Manual Cross Selling Selection and offering of additional or accessory products
® ves O no Auto Cross Selling Create product suggestions through statistical analysis of

customer purchase bahavior

Figure 24: Feature activation by the business administrator

Here again, the difference between features with MaxValue="1" or greater 1 is shown. For equal to 7, there
is only the option Yesor No. For greater than 7, the business administrator can set any value. The
maximum is set in the XML file.

The query in a PERL module is as follows:

my $Feature = LoadObjectByPath("/Features/Product®);
ifT ($Shop->featureMaxValue($Feature)) { ... Y else { ... } ;

Code example 49: Query of features in the PERL source code

Testing in templates is used to activate or deactivate feature-functions such as links or buttons. The test in
PERL allows corresponding error handling if the limits are exceeded.

Page 94 ePages 5 - Design and Cartridge Development Guide

Error Handling for Object Attributes Form Handling

14. Form Handling

The data that must be entered in templates must follow certain specifications about allowed characters
and regional formats and can be limited by minimum and maximum values. Testing the entry values occurs
during the Save command. Data with errors are not allowed to be saved.

Form handling simplifies and unifies display and editing of entry fields in templates. The data entry is
structured and provided with a unified error management. Forms are available to do this for the developer.
In these forms, individual entry fields or field groups are assigned. This assignment controls the type and
limits of entries as well as the further processing of the content. These fields are called FormFields.

The form handling offers the ability to centrally define the processing and error handling for form fields and
to perform these the same for every form.

The following design guidelines are applied here and should be kept:

- Required fields are marked with an asterisk *

- If entry mistakes are made, the complete form is shown again with the entered values shown. These
values are only saved if all entry values are correct.

- Ifthe form contains multiple entry errors, all rows with entry errors are shown highlighted, so that they
can all be corrected at once.

Additional possibilities are:

- The focus can be placed on the first error field.
- Inthe error fields, an example of a correct entry can be shown.

Display, testing, and processing of the entry values are related to the assigned type, mandatory field

definition and value range. You have two ways to define these parameters for attributes: in the
Attributes* xmland in Forms*xml.

14.1 Error Handling for Object Attributes

Single-dimensional object attributes are simple attributes, for example weight or tax class. They are
defined in the Attributes* xmlfile. These attributes are verified automatically during template processing
based upon their type definition.

The verification occurs through the execution of the validation function affributeValuesin "Standard-Save"
SUPER::Save($Serviet) from DE_EPAGES::Presentation::Ul::0bject .

14.2 Error Handling for Freely-Definable Forms

You can also use multi-dimensional attributes in forms. The treatment of multi-dimensional attributes,
such as prices or sub-products, must be defined separately. In this case, the type of attribute is already
available, but since a variable quantity of values is shown, this variable display and handling must be
defined. The same applies for parameters that do not belong directly to this object.

For these cases, the file Forms*xmlis available that you can create for each cartridge if necessary.

You can use the following types in the FormField definition:

ePages 5 - Design and Cartridge Development Guide Page 95

Form Handling Error Handling for Freely-Definable Forms

Table 17: Data type definitions in forms

Description MinValue/MaxValue Determination

string Text field Maximum length of the text. If this field is
marked as a mandatory field, then the
minimum length is 1.

integer whole number, unformatted Minimum and/or maximum value

float floating-point number, Minimum and/or maximum value
unformatted

reg_date Date in the regional format not usable

reg_time Time in regional format not usable

reg_datetime Date and time in regional format |not usable

reg_money Currency in regional format with |Minimum and/or maximum value
currency displayed

reg_integer Whole number (regional format) [Minimum and/or maximum value

reg_float floating-point number in regional [Minimum and/or maximum value
format

checkbox logical value (true or false) not usable

file Loaded file Minimum or maximum size in bytes

email_address Text in e-mail address format not used

ip_address Only possible in IPv4 format not used

For each of these types, a corresponding entry error handling is implemented.

You must define and implement the corresponding actions for saving the form for the template in which
you use FormFields. The Action-Handler must be passed the correct forms in the function.

During execution, the FormFields are automatically subjected to type-specific error tests and in case one or
multiple entry errors, the corresponding error-TLEs are filled. See also Error TLE, on page 69. The template
is shown again. Through evaluation of error-TLE contents in the template, the corresponding error
messages are shown.

If you want to use form handling in your own templates, you must do the following:

1. Identify the FormFields in the template.

2. Define the FormFields in the Forms*.xml of the cartridge.

3. Implement the handling of field values during saving of the form. Possible definition of your own error
handling routines for values that do not match standard types.

4. Evaluation of the error TLEs in the template

An example of form handling is implemented in training in the Polling Cartridge.

14.2.1 Definition of FormFields

During creation of the templates, you must first determine which error handling mechanism would be
appropriate for the individual fields. Was previously explained, the entry values for single-dimension
object attributes are tested by default.

The assignment remains for you to take care of the multi-dimensional attribute values that do not belong to
the object. Create a Forms* xm/file for these. The naming conventions for XML import files applies to the
file names, see /mport Files, on page 113. A simple FormField definition can be seen in Code example 50

Page 96 ePages 5 - Design and Cartridge Development Guide

Error Handling for Freely-Definable Forms Form Handling

<?xml version="1.0" encoding="UTF-8"7?>
<epages Cartridge="DE_EPAGES: :Shop">
<Class reference="1" Path="/Classes/Shop''>
<Form Name="SetPolling" delete="1">
<FormField Name="PollingA"™ Type="integer' Mandatory="1" MinValue="1"
MaxValue="10"/>
<FormField Name="PollingB" Type="integer'" Mandatory="1" />
<FormField Name="PollingC" Type="integer" Mandatory="1" />
</Form>
</Class>
</epages>

Code example 50: Example of a FormField statement

In the example, you can see that forms are class-based. In addition, each form receives a unique name. It
is also possible to define different forms for the data entry of a class.

Each field within a form must have a unique name. A type is assigned for each field. The values 0Oand 7 are
possible for the mandatory field definition Mandatory. Depending upon the type, see 7able 17, a area limit
can be entered.

The definition of forms for multi-dimensional attributes is somewhat more complex. The reason for this is
that during installation of the template, it is not clear how many values of a specific attribute must be
entered. An example of this is the product price. Depending upon the entered currencies, that number of
entry fields for the price are shown. A loop definition is used in such cases in form. See Code example 51
oralso Code example 55:

<?xml version="1_.0" encoding="UTF-8"7?>
<epages Cartridge="DE_EPAGES: :Product'>
<Class reference="1" Path="/Classes/Product'>

<Form Name="Save" delete=""1">
<FormLoop Name="ProductPrices'>
<FormField Name="CurrencylID" Type="string" Mandatory="1" MinValue="3" />
<FormField Name="Price" Type='"reg_money" />
</FormLoop>
</Form>

--;/CIass>
</epages>

Code example 51: Form for multi-dimensional fields

All impacted fields, in the example Currency/Dand Price are defined in a formLoop. This is the prerequisite
that the error handling for these fields are performed for as many entry fields are shown in the template.
The name of the FormLoop within a form must be unique. The number of FormFields in the FormLoop must
be equal to the quantity of entry fields in a template for multiple values can be entered.

The forms are registered in the database during cartridge installation. The forms are imported manually
into the database with the following command:

perl %EPAGES_CARTRIDGES%/DE_EPAGES/Presentation/Scripts/import_pl Forms._xml

For the basic principles about file importing, see /mport / Export of database contents, on page 113.

14.2.2 Using Forms in Perl Code

You have to make sure that forms in PERL code are processed correctly. The method $Srviet->form-sformis
available for this. With this method, the FormFields will be validated based upon the regional settings
according to type and area limits. Errors that occur are saved in an error list that can be accessed by the
error TLE.

ePages 5 - Design and Cartridge Development Guide Page 97

Form Handling Error Handling for Freely-Definable Forms

The syntax for the method in PERL code is:

my $<hashreferenz> = $Servlet->form->form($<object>, "<formname>");

The <object> must be an object of the class for which the form was registered. See Code example 50and
Code example 51.

The following example shows the usage:

sub SaveMailSettings {
my $self = shift;
my ($Servlet) = @_;
my $Form = $Servlet->form;

get the current object from the servlet
my $System = $Servlet->object();

validate input data and get unformatted values
my $hValues = $Servlet->form->form($System, "MailConnection®);

save the new values
$System->set($hvalues);

return;

Code example 52: Validating forms in PERL

14.2.3 Validation of Undefined Data Types

You can also define fields in forms that do not match the standard types. For such FormFields, you must do
the validation in the PERL code itself. The same applies to fields which for example may be validated
extensively according to the validation the type definition.

You can see an extended validation in Code example 53.

sub SaveSettings {

validate input data and get unformatted values
third parameter = 1 means skipExecuteFormError

$FormValues = $Form->form($PaymentMethod, "Settings", 1);

#-—- additional check: check the merchant secret
my $Secret = $FormValues->{"Secret"};
if (defined($Secret) && $Secret !~ /A[A-Fa-f0-9]1+$/) {
$Form->addFormError({"Name® => "Secret”, "Reason” => "HEXDIGITSONLY",
"ViewAction® => "MBO-ViewSettings });
b

$Form->executeFormerror();

#--- standard save
$sel f->SUPER: :Save($Servilet);
3

Code example 53: Extended validation for forms

Page 98 ePages 5 - Design and Cartridge Development Guide

Error Handling for Freely-Definable Forms Form Handling

First, the form is read. Before execution of the specific validation, the general error test for the form is
performed. The last parameter transfer, 7 determines that in spite of possibly occurring errors, the
processing will not be canceled.

In the further processing, an additional test is performed for the field Secret of type string. A verification is
performed to determine whether the characters used are in a certain area. In case of an error, an entry with
an explanation of the error is entered into the error list.

Afterwards, the general error handling occurs.

14.2.4 Error Handling Templates

All errors that are determined during validation are entered into an error list, the FormErrorLoop. This
ForméErrorLoopis a prerequisite for analyzing and displaying the errors in the template using the error TLE.
The error TLE's that are available for this are listed in Error TLE, on page 69.

Error handling can be divided into three cases:

- Errordisplay for individual fields
- Error Display in Lists
- Display of all errors of a template in a list

14.2.4.1 Error display for individual fields

Here a query is made for individual fields whether an error has occurred. Because of this, each field can
have, if necessary, a specific error handling in the template.

#1F(#FormError)
<div class="DialogMessage" id=""MessageWarning">
<h3>{InputError}</h3>
{PleaseCorrectErrors}
</div>
HENDIF
#WITH_ERROR(#FormError)
<table>
<tr #IF(#FormError_SMTPServer)class="DialogError" #ENDIF>
<td class="InputLabelling">{MailServer}</td>

<td>
<input type=""text' name="SMTPServer' size="20"
value="#SMTPServer'/>
</td>
</tr>

<tr #IF(#FormError_SMTPPort)class="DialogError' #ENDIF>
<td class="InputLabelling">{ServerPort}</td>
<td><input type="text" name="SMTPPort" size="20"
value="#SMTPPort[integer]"/></td>
</tr>
</table>
#ENDWITH_ERROR

Code example 54: Error handling in the template for individual fields

In the example, a general query about errors occurs first. If so, a warning message is shown.

Afterwards, #Form£Error <fieldName»stests the fields SMTPServerand SMTPPortto determine whether errors
have been entered. If so, the view for these fields is changes.

14.2.4.2 Error Display in Lists

The unique thing about lists is that multiple values for an entry field can be entered. To be able to validate
these fields, Loops are defined in forms. See Code example 51. For the display in the template, analogue
structures are necessary. Errors must be validated and displayed with the Loop so that every error can be
shown in the list.

ePages 5 - Design and Cartridge Development Guide Page 99

Form Handling Error Handling for Freely-Definable Forms

#LOOP(#ListPrices)
#WITH_ERROR(#FormError)
<tr>
<td #IF(#FormError_Price OR #FormError_CurrencylD)
class="DialogError"#ENDIF>
<input type=""text" name="Price" value="#Price[money]" class="Price"/>#
</td>
<td>
#Currency.Symbol
<input type="hidden" name="CurrencylID" value="#CurrencyIlD" />
</td>
</tr>
H#ENDWITH_ERROR
#ENDLOOP

Code example 55: Error handling in the template for lists

In the example, multiple price entry fields are activated for a product and shown depending upon the
currencies that are activated. If entry errors are determined for one or multiple prices, the corresponding
fields are highlighted in the re-displayed template.

14.2.4.3 Display of all errors of a template in a list

Another possibility of error display is listing of all errors in a separate list. In this case, no entry fields are
highlighted, but an overview of the errors is shown with a descriptions. A usage example is the display of
errors in the data export.

For this error display, the error TLE #FormErrors.<ErrorTLEName»is used:

#1F(#FormError)

#LOOP(#FormErrors.Errors)

Error: #Reason, #Value, #Name (#Index).
H#ENDLOOP
#LOOP (#FormErrors.Reasons)
Reason=#Reason
H#ENDLOOP

H#ENDIF

Code example 56: Display of error list

The error information that can be read and displayed is available in the APl documentation for the module
Form.pm at Presentation/API.

Page 100 ePages 5 - Design and Cartridge Development Guide

ePages Web Services and Framework Web Services

15. Web Services

Web services offer the ability to exchange data between platforms. Protocols such as HTTP, SMTP, or FTP
are used to do so. The data are structured according to the SOAP standard and are transferred to an XML
document.

ePages 5 offers a framework, in addition to its own Web services, that supports the creation and
integration of Web services.

This is described in the following section. The prerequisites are knowledge in Web services, XML, SOAP
lite, WSDL, and PERL programming.

ePages offers a specific training for this topic. The training supports this chapter with examples, additional

information, and explanations. In addition, external tools to validate Web services and clients are also
introduced.

15.1 ePages Web Services and Framework

ePages uses Web services internally to transfer data between the central administration database and the
shop database.

Data exchange with external systems is available in the following Web services:

Table 18: Web services in ePages
Data Area ‘Web service

Product data and catalog structures ProductService
CatalogService
AssignmentService

Price Lists PriceListService
PriceListAssignmentService

Customer Data CustomerService

User Data UserService

Order Data OrderService

Billing and packing slip data OrderDocumentService

Creating shops/shop management ShopConfigService

Use the Diagnostics Cartridge to view all Web services registered in ePages 5.

The basis for implementing Web services is the WebService cartridge. It provides a basis Web service and
binds with the module SOAP::Lite as well. A basic permission check is implemented there as well.

The description for each of the Web services named in 7able 18is contained in the respective WDSL file.
These WSDL files are found in these directories:

%EPAGES_WEBROOT%/<store>/WSDL

or

%EPAGES_WEBROOT%/Site/WSDL
Complex data types that are used in a Web service are defined in the corresponding XSD file.

The Web service requests are handled in the system as follows:

ePages 5 - Design and Cartridge Development Guide Page 101

Web Services Generate ePages Web Service

- Client request is received

- Verification whether the Web service is registered in the database

- Verify whether the required permissions to execute the function exist.

- Transfer of the request to the SOAP::Lite module which converts the provided XML document to the
corresponding PERL objects

- Execution of the corresponding functions in PERL modules and return the results

- Conversion of the result in an XML document through the SOAP::Lite module

- Transfer the response with the XML document to the client

Note: The prerequisite for executing Web services is activating the feature Program Interface for Web
Servicesin the business back office. The description about how to do this is available in the Business
Administration Guide.

A logging feature has been integrated into the Web service cartridge in order to shop possible SOAP errors.
This logging can be activated in this file:

%EPAGES_CONFI1G%/ log4perl .conf

Remove the comment character for the SOAP serverline:

SOAP server

;log4perl _category.DE_EPAGES: :WebService: :API: :SoapServer: :make_ fault = DEBUG

;log4perl.category.DE_EPAGES: :WebService: :API::SoapServer: :find_target = DEBUG

;log4perl _category._DE_EPAGES: :WebService: :APl: :WebService: :BaseService: :CheckPermi
ssion = DEBUG

You can find more about the log4peri.conffile in the /nstallation Guide for Windows.

15.2 Generate ePages Web Service

Create a new Web service in your own cartridge. The following elements exist in the cartridge structure:

- The subdirectory /APl/WebService- PERL modules for the Web service are contained here.

- The subdirectory /Data/Public/WSDL — WSDL files for Web services are created here. These descriptor
files are optional. They are transferred to the %EPAGES-WEBROOT%/<stores/WSDL directory during
installation.

- Thefiles Actions* xmland Permissions*.xm{must be extended with the Web service-specific entries. In
this way, the Web services are registered in the database and the corresponding permissions are
granted.

After creating the cartridge, you must perform the following steps, to create a Web service:

1. Register
2. Authorize
3. Implement

15.2.1 Register

Every Web service must be registered in the database. This is done using the Actions* xmlfile of the
cartridge. Create this file or extend the one that is already there. During installation, the file will be
imported into the database and the Web services and their methods are registered in the corresponding
tables.

In Code example 57you can see the structure of an entry for registering a Web service.

Page 102 ePages 5 - Design and Cartridge Development Guide

Generate ePages Web Service Web Services

<?xml version="1.0" encoding="UTF-8"7?>
<epages>
<Object Alias="WebServices'>
<WebService Alias="MathService"
URI="urn://epages.-de/WebService/MathService/2005/05" delete="1">
<Object Alias="Methods'">
<WebServiceMethod Alias="Add"
="Training: :MyWebService: :APl: :WebService: :MathService" />
</Object>
</WebService>
</Object>
</epages>

Code example 57: Registering a Web service

The Web service is registered in the Object folder WebServices. An Alias and a URI must be provided for the
Web service element itself in the element WebService . The URI (Unique Resource Identifier) string is a
similar to a URL and is used to identify the Web service. It has also become standard to enter the creation
period (2005/05).

Within«Webservicess, you must define the methods They must be assigned to the Methods object.

In the WebServiceMethodtag, a method is defined. The name of the method is provided under A//as.
Package shows where the method is implemented in PERL. Each method must be entered individually.

15.2.2 Authorization

You must enter who is allowed to execute each Web service. That means, for each Web service a role must
be defined which has the right to call the methods.

These permissions are set in the Permissions* xmdlfile. In Code example 58, you can see one such entry.

<?xml version="1.0" encoding="UTF-8"7?>
<epages>
<Class reference="1" Path=""/Classes/WebService'/>
<Role reference="1" Path="/Classes/Shop/Roles/WebService'>
<WSRoleMethod WebService="MathService" Method="Add" delete="1" />
</Role>
</epages>

Code example 58: Setting the permission

First set to which class the permission should be assigned. Enter the role which has permission to execute
the method in the Role element. In WSRoleMethod, the method is provided along with which Web service
this method belongs to.

The WebService role is automatically assigned to every administrator of a shop. That means, that the role
assignment in Code example 58 allows every shop administrator to call the method Add of the Web
service MathService .

If you would like to offer a function publicly, meaning everyone can call the function via Web service, you
should:

- use basis for the Web service BaseService,

- passthe shop as the parameter

- create a new role, for example PublicWebService,
- and assign this role to the group £veryone.

15.2.3 Implementation

ePages 5 - Design and Cartridge Development Guide Page 103

Web Services External Clients for ePages 15.3 Web Services

The functions themselves are implemented in the PERL modules of the Cartridge directory
JAPIl/WebService.

The foundation for the Web service implementation is the base class BaseService from the package
DE_FPAGES::WebService::API::WebService::BaseService. This class provides, among others, the following:

- apermission check
- the user object of the current Web service user
- data mapping between the entered XSD file and the entered URI

Depending upon whether the Web service is available for the shop or for provider actions, there are two
additional subclasses of BaseService that you can use as the basis for your Web services:

- DE_EPAGES::Shop::API::WebService::BaseShopService: This class uses the shop object and authorized
the respective merchant login. This class is primarily used for implementation of storefront and back
office functionality.

- DE_EPAGES::ShopConfiguration::API::WebService::BaseProviderService: These classes use the
distributor object and authorize the distributor login.

Code example 59 shows the integration of one of the base classes:

Package="Training: :MyWebService: :API: :WebService: :MathService;
use base DE_EPAGES::Shop::API::WebService: :BaseShopService;
use SOAP::Lite;

sub Add {
my $self = shift; #First argument is service object
my ($s1, $s2) = @_; #2 doubles expected from client
my $sum = $sl1 + $s2; #WS-implemented code
return $sum;

}
1;

Code example 59: Web service PERL module

15.3 External Clients for ePages 15.3 Web Services

To call the ePages 5 Web service, the necessary external systems must be offered to the corresponding
clients.

For certain programming languages, such as Java and C, the code can be generated automatically based
upon the WSDL files. For PERL, you must create the clients manually.

You must create a SOAP object in the client module that you pass the URI (the name of the Web service)
and the goal point (proxy) the address of the SOAP service to.

Additionally, ePages standard Web service requests expect authorization via user name and password.
The general form for calling the proxy is:

http://login:password@epagesserver/epages/Store.soap

The unique thing relating to ePages is that the login data must be transferred in the form of an object path,
for example:

/Shops/DemoShop/Users/admin

In this form, the login cannot be passed as a proxy call, because slashes (/) are not allowed. To get
around this problem, login information are read from the credentials. Code example 60 shows a possible
variation:

Page 104 ePages 5 - Design and Cartridge Development Guide

External Clients for ePages 15.3 Web Services Web Services

use SOAP::Lite;

my $NAMESPACE = "urn://epages.de/WebService/MathService/2005/05";
my $CREDENTIALS = "/Shops/DemoShop/Users/admin:admin®;

my $SERVER "localhost:8080";

my $STORE "Store”;

my $PROXY_URL = URI->new("http://$SERVER/epages5/$STORE.soap™);
$PROXY_URL->userinfo($CREDENTIALS);
my $soap = SOAP::Lite->uri($NAMESPACE)->proxy($PROXY_URL->as_string);

my $sum = $soap->Add(175.6, 3.2)->result;

print "Add = $sum\n";

Code example 60: External client

The necessary login data are transferred to the PROXY _URL using the function userinfoand the parameter
CREDENTIALS. The function as_string generates the correct proxy call for the example in the form of:

http://admin:admin@localhost:8080/epages5/Store.soap
After the SOAP object was created, a Web services method listed in NMAMESPACE can be executed.
From the example, you can see that for the authorization a login and password of a shop administrator is
used. This means that, as soon as the shop administrator changes his sign-in information, the Web service

calls must be changed as well.

Itis a good idea to create an administrator for Web services in the user management of a shop whose data
is only changed in consultation with the person responsible for Web services.

If you use the MS IIS Web server, note that for effective passing of user name and password in a URL, it is
necessary to turn off integrated Windows authentication for the virtual epages directory. Otherwise, the
user name and password cannot be transferred to the service.

These settings can be changed in the MS IIS properties. See Ffigure 25.

ePages 5 - Design and Cartridge Development Guide Page 105

Web Services

Implementing an ePages Web Service Client

[Internet Information Services (II5) Manag

‘:g File Action Wew Window

Help

epages5 Properties

& = | @@ X3

-F_I Internet Information Services
El---i! YM-SAPPC (local computer
- _J Application Pools

- Wirtual Direckary I Documents Directory Security | HTTFP Headers I Cuskam Errars I o

—Awthentication and access conkrol

=) teb Sites
= Default vweb Site

[g CertControl e

Enable anonymous access and edit the
authentication methods Faor this resour

CertEnrall
‘t', CertSry N R ma—r sl Authentication Methods
usd BPAOES Grantor [¥ Enable anonymous access:
@ IP addre: Use the Following Windows user account for anonymous access:

| [+ g epagess
-

sor

User narme: I TSR _YM-PDOMIN

Browse, .. |

Password; I TIIIIIIIT]

[~ Secure cammunication

Require ¢
enable cl

FesouUrce

—Authenticated access

are required when:
- anonvmous access is disabled, or

" Integrated Windows authentication

[MET Passport authentication

Far the following authentication methods, user name and password

- access s restricted wsing NTFS access contral lisks

SErVErs

™ Basic authertication {password is sent in clear text)

efault domain: I Select, .. |
Fezalm: I Select,., |
QK I Cancel | Help |

Figure 25: Deactivating Windows authentication

In case the Web services is written by an WSDL file, you can open the functions by creating a service object

and passing the URL of the Web service to it. See Code example 61.

use SOAP::Lite;

my $service = SOAP::Lite
->service("http://epagesserver/Store/WSDL/MathService .wsdl ™) ;

my $response = $service-> Add(175.6, 3.2);

print $response;

Code example 61: External client with WSDL URL

Then you can call the desired method using the service object.

15.4 Implementing an ePages Web Service Client

External Web services can be called from the storefront and back office templates. To do so, you must
create your own TLE function. Use this TLE function to call the Web service. The results are shown in the
return value of the function and can be shown in the template. Read Creating a TLE Function, on page 75.

One possibility of Web service integration in a template is shown in Code example 62.

Page 106

ePages 5 - Design and Cartridge Development Guide

Implementing an ePages Web Service Client Web Services

#IF(#INPUT .StockSymbol)
#SET ("'StockQuote",
#FUNCTION(""WS_STOCKQUOTE", #INPUT.StockSymbol))
HENDIF
<div class="ClearBoth"></div>
</div>
#1F(#StockQuote)
<I-- Explanatory text -->
{Results} #StockQuote

<I-- /Explanatory text -->
H#ENDIF

Code example 62: Calling a Web service from a template

In the example, the external Web service is called through the function WS_STOCKQUOTE. A parameter
required by the Web service is passed. The Web service answer is passed to the variable SfockQuotethat
is then shown in the template.

The function to call the Web service is shown in Code example 63:

sub WS_STOCKQUOTE {
use SOAP::Lite;
my $self = shift;
my ($Processor, $aParams) = @_;

my ($StockSymbol) = @$aParams;
return unless $StockSymbol =~ /[a-zA-Z]+/;

my $soap = SOAP::Lite
->uri("urn:xmethods-delayed-quotes*®)
->proxy("http://services.xmethods.net/soap*);

my $quote = $soap->getQuote($StockSymbol)->result;
my $output = "$StockSymbol = $quote \n'';

return $output;

}

Code example 63: Calling an external Web service

ePages 5 - Design and Cartridge Development Guide Page 107

Providing a Hook Hooks

16. Hooks

Hooks are defined areas in functions, from which other external functions are called. They let you extend
the function of a module without modifying the module. These module extensions must be registered for
the corresponding hook.

During the process, every hook is checked for whether an additional function has been registered for this
hook. After the function has been executed, the "normal” process is resumed.

The basic function for setting up hooks is the 7riggerHook() function in the 7riggercartridge.

The code generator automatically generates standardized trigger points. Every ePages class provides
hooks whenever objects or table entries are generated, updated and deleted.

Table 19: Default hooks

Object hook HTabIe hook ‘Call

OBJ_Insert$Class API_Insert$Table After a new object of type $Class or a new table
entry has been inserted in $Table.

OBJ_Delete$Class AP|_Delete$Table Before an object of type $Class or a table entry

is deleted from $Table.

OBJ_BeforeUpdate$Class [API_BeforeUpdate$Table Before attributes for an object of type $Class
are modified or before a table entry in $Table is
modified.

OBJ_AfterUpdate$Class AP|_AfterUpdate$Table After attributes for an object of type $Class
have been modified or before a table entry in
$Table has been modified

Hook names are structured as follows:

1. Prefix OB/_or AP/_indicates whether the function is used on an object or a table.
2. Name of the action, for example, AfterUpdate

3. Name of the class or table

You can view an overview of all the available hooks using the Diagnostics cartridge under All Hooks.

16.1 Providing a Hook

In order to provide a hook in a cartridge, the corresponding function call must be implemented in the code
and registered in the database. For this, the following steps are necessary:

1. Insertthe 7riggerHook function in the source code:

package COMPANY::Cartridge::API::Example;

use strict;
use DE_EPAGES::Trigger::API::Trigger gw (TriggerHook);

sub Example {
TriggerHook(*0BJ_MyHookAction_MyHookObject®, { “Paraml® => *Valuel® });
}

1;

Code example 64: Inserting the trigger function for a hook

ePages 5 - Design and Cartridge Development Guide Page 109

Hooks Function Extensions Using Hooks

We recommend naming the hook according to the structure explained above.

A hash is passed as a parameter. This hash contains the parameters used in the function including
hook details such as HookCount or HookName and a reference to the object or the PrimaryKey in the
table.

2. Enterthe hook function in the corresponding Hooks* xm!/ file in the cartridge. For more on this, see
Hooks, on page 109.

<?xml version="1.0" encoding="UTF-8"?>
<epages>

<Hook Name='"0BJ_MyHookAction_MyHookObject" delete="1" />
</epages>

Code example 65: Registering the hook in the XML file

3. To register the function in the database, import the Hooks* XML file using the Trigger-Import script:

%EPAGES_PERL%\bin\perl %EPAGES_CARTRIDGES%\DE_EPAGES\Trigger\Scripts\import.pl
-storename Store Hooks.xml

Use the Diagnostics cartridge to make sure that the hook has been correctly registered in the database.

16.2 Function Extensions Using Hooks

There are three steps required for using existing hooks for function extensions:

1. Implement the function extension in an external PERL module. The following naming convention is
used to define the function:

Code example 66: Naming convention for hook procedures

The following example shows how to implement this naming convention:

package COMPANY::Cartridge: :Hooks::MyObject;
use strict;
sub OnMyHookProcMyObject {

my ($hParams) = @_;

GetLog->debug("Valuel=" . $hParams->{"Valuel"});
}

1;

Code example 67: External function extension

2. Enterthe function-hook reference in the Hooks* xmlfile. For more on this, see Hooks, on page 109:

Page 110 ePages 5 - Design and Cartridge Development Guide

Function Extensions Using Hooks Hooks

<?xml version="1.0" encoding="UTF-8"7?>
<epages>
<Hook Name="MyHook" reference=""1">
<HookFunction FunctionName="COMPANY::Cartridge: :Hooks::
MyObject: :MyHookProc: :OnMyHookProcMyObject ' OrderNo="1" delete="1"/>
</Hook>
</epages>

Code example 68: A function-hook reference
Then use the Hooks*.xmlfile in the cartridge in which you want to implement the function extension.

The OrderNois of type /ntegerand can be assigned optionally.

Note: As soon as more than one function has been assigned to a hook, these functions are
executed according to the order of the OrderNo.

3. Import the Hooks* xmlfile using the Trigger-Import scriptin order to register the reference in the
database:

%EPAGES_PERL%\bin\perl %EPAGES_CARTRIGES%\DE_EPAGES\Trigger\Scripts\import.pl
-storename Store Hooks.xml

Use the Diagnostics cartridge to make sure the function has been correctly assigned to the hook. To do
this, click the hook name in the list of hooks to display the assigned functions.

ePages 5 - Design and Cartridge Development Guide Page 111

Import Files Import / Export of database contents

17. Import / Export of database contents

A large part of the data is provided in an XML file and must be read into the database. These are, for
example, descriptions of class structures, function and attribute definitions, or content. You have already
become familiar with examples of the individual import files in the practical examples.

The imports are either executed when the cartridge is installed or can be started from the command
prompt. Depending on the type of data to be imported, different import handlers need to be used. For
information on how to execute manual imports, refer to XML /mport, on page 114.

17.1Import Files

XML import files that are used in cartridge development and automatically read into the database during
installation are explained in the following.

These XML files are subject to a naming convention. The file names must begin with the Type name used
but can be extended as you like after that. The file must end with .xm/. You can create multiple files per file
type that are differentiated only by the optional extension.

An example of the names you can use for the XML file for PageTypes is as follows: PageTypesMBO.xml or
PageTypesSF.xml. For Attributes.xml, you could use AttributesShop.xml.

Examples for using these files can be found in examples and in the default cartridges of your ePages
installation.

The following table gives an overview of the XML files that you can use in your cartridges for importing. The
optional name extension is represented by * (wildcard).

Table 20: Import files in cartridges

Import file ‘Description

Actions*.xml Definition of ViewActions and ChangeActions, see URL Actions, on page 29.
The functions called by these actions are located in the modules in the /U/

cartridge directory. Every ViewAction can be linked with an online Help topic, see
Integrate your own online Help, on page 165.

Attributes*.xml Import of object attributes

This file is also automatically generated when using the PowerDesigner and
contains all the attributes that were assigned using the PowerDesigner. Additional
attributes need to be defined manually.

DefaultShop*.xml Definition of values set for specific objects and attributes when a new shop is
created;

this is not automatically imported when a cartridge is installed. The import must be
implemented accordingly, for example, using Cartridge.pm.

Dependencies.xml |Assignment of dependencies to other cartridges

This file defines which cartridges need to be present and installed to guarantee
cartridge function.

If one of the cartridges listed in the file was not installed during the installation
process of your cartridge, the system automatically installs the missing cartridge.
Use the Diagnostics cartridge to determine the dependencies between cartridges.
For more on this, see Diagnostics Cartridge, on page 125.

Features*.xml Definition of cartridge functions as features.
A feature is a function in the shop that the business administrator can activate
optionally and can, therefore, be used as a basis for defining various shop types.

ePages 5 - Design and Cartridge Development Guide Page 113

Import / Export of database contents XML Import

Import file ’Description

Forms*.xml Definition of the entry fields used in forms including information on the field
restrictions and validation;
For more on this, see Form Handling, on page 95.

Hooks*.xml Hook definition and registration, see Hooks, on page 109.

If you create a database model with the PowerDesigner, corresponding hooks are
automatically generated for the tables and also stored as an XML import file.
Additional hooks need to be defined manually.

MailType*.xml Definition of the MailTypes for e-mail events; they are listed in the e-mail settings
on the merchants administration page. For more on this, see Adding £-Mail Events,
on page 149

NavElements*.xml |Definition of the navigation elements available to the merchants.

PageTypes*.xml Definition of logical areas for the Web pages, and template assignment.
For more on this, see PageTlype Concept, on page 39.

Permissions*.xml Definition of which actions can be executed by which user.
Every action can be assigned a certain role, see Rights and Roles, on page 21

PortalSites*.xml Definition for which countries the portal is available and pre-set of specific data
such as LocalelD, Registration URL, or tax model

Search*.xml Definition of database search queries including possible parameters and sorting
keys

System.xml Attribute assignment in the system when a cartridge is installed, for example,

default settings for the Web server settings or information about the API version
used in the eBay cartridge;

this is not automatically imported when a cartridge is installed. The import must be
implemented accordingly, for example, using Cartridge.pm.

TemplateTypes*.xml |Definition of alternative display options for products and categories
An example of this is the display options for the individual product types on the
merchant's administration page.

17.2 XML Import

In order to manually execute XML imports, you can use various development tools in the form of import
scripts.

These command line-based tools validate the XML files when they are read in. Error messages are
displayed on screen and in the %£PAGES_LOG%error.loglog file. You do not have to restart the ePages
service after finishing the import. The application server cache is automatically reset. If you read your data
into the database using a different method, for example, via direct SQL statements, no automatic cache
refresh occurs.

The import script is called /mport.p/and is located in the following directory:
%EPAGES_CARTRIDGES%/DE_EPAGES/Object/Scripts

Itis called in the console as follows:
perl import._pl [options] [flags] <dateiname>._.xml

The individual options and parameters and how they are used are displayed by simply entering the
following

perl import.pl [-help]

Page 114 ePages 5 - Design and Cartridge Development Guide

XML Import Import / Export of database contents

For example, if you want to import an XML file for PageType definition, enter the following:

perl import.pl —storename Store <cartridgepath>/PageTypes.xml

Storeindicates the database into which the file will be imported. Since no object path is explicitly
indicated, /(System) is used by default.

On the other hand, if you would like to import payment methods, for example, especially for the
demoshop, you need to indicate the object path to the demoshop for the import. That is why the import
command appears as follows:

perl import_pl -storename Store -path *'/Shops/DemoShop"*
<cartridgepfad>/PaymentMethods.xml

Again, the object path is implicitly extended with the prefix System resulting in the complete object path
System/Shops/DemoShop.

You can determine the object path to the respective target using the Diagnostics cartridge. To learn more
about working with the Diagnostics cartridge, refer to Diagnostics Cartridge, on page 125. You will find an
example of this in chapter XML Export, on page 116.

The default installation also includes the demoshop. All the data for this shop are prepared and read into
the import files DemoShop.xmlin the following directory

%EPAGES_CARTRIDGES%/DE_EPAGES/DemoShop/Database/ XML

This file contains examples of the import formats for all the applicable objects in a shop.

17.2.1 Special Case : standards.pl

Some data cannot be imported as objects into the ePages class structure. This includes currencies as well
as language and country codes in the XML files:

- %EPAGES_CARTRIDGES%/DE_EPAGES/Object/Database/XML/Currencies_4217.xml!
- %BEPAGES CARTRIDGES%/DE_EPAGES/Object/Database/XML/Countries_3166.xml
- %EPAGES_CARTRIDGES%/DE_FPAGES/Object/Database/XML/languages.xml

- %EPAGES_CARTRIDGES%/DE_FPAGES/Object/Database/XML/Locales.xm/!

These data are read in with a special import command. To do this, enter the following into the console:

perl standards.pl -storename <Store> <dateiname>.xml

17.2.2 Special Case: Hooks

To import hooks, a special import script needs to be used. This is located in the following directory:

%EPAGES-CARTRIDGES%/DE_EPAGES/Trigger/Scripts

To import files of type Hooks* xml, the following call is necessary:

perl %EPAGES-CARTRIDGES%/DE_EPAGES/Trigger/Scripts/import._pl
<dateipfad>/Hooks*.xml

17.2.3 Special Case: Forms

To import forms, still another special import script needs to be used. This is located in the following
directory:

%EPAGES-CARTRIDGES%/DE_EPAGES/Presentation/Scripts

ePages 5 - Design and Cartridge Development Guide Page 115

Import / Export of database contents

XML Export

To import files of type Forms*xml, the following call is necessary:

perl %EPAGES_CARTRIDGES%/DE_EPAGES/Presentation/Scripts/import.pl
-storename <store> <dateipfad>/Forms*._xml

17.3 XML Export

In addition to importing, you can also export data in XML format. The syntax is similar to the import
function and the script is located in the same directory. Enter the following command:

perl %EPAGES_CARTRIDGES%/DE_EPAGES/Object/Scripts/export.pl [-help]

Various options will be displayed. The general command line is as follows:

perl export._pl [options] [flags] <objects>

At this point, it is necessary to indicate the objects to be exported. Use the export function to generate
correctly structured XML files as templates for importing.

The following example demonstrates export and import. Let us assume you would like to set up an
additional delivery method for the demoshop. You do not want to create this method manually. It needs be

importable.

To receive a template for the import file, export the demoshop delivery methods. Since you want to export
the objects for a particular shop, you need to indicate the object path to this shop. Use the Diagnostics

cartridge to read the object path.

Open the Diagnostics cartridge and call All Shops from the main page:

Ule ePages 5 Diagnostics
ey

Store + ePages 5 Diagnostics
Diagnostics Index

All Classes

List defined classes. Wiew class details (attributes, actions, and S0 on).

System Object

Ohjects are organized within folders beneath the system root. Explote the hierarchical
object tree.

.

.

All PageTypes
List defined page types. Wiew details such as template file names and so.on,

.

.

epages @

Guickbar | [Flease Select] 4 | Your Account | Sign out

All Groups
List the user groups. Views group dependencies and members

All Users
List uzers and view group membership. Access user details.

All Languages
Wiy languages that are activeted for the site.

Cache

.

All Shops
See contents of the 'Shops' folder, explore shop contert and browse the shop's folder
structure.

Installed Cartridges

List installed cartridges with version informstion. Find cartridge dependecies.
All Hooks

“Wigw all available hooks. View functions that use a hook.

All WebServices
List awvailablz web services. View parameters such as covered functions, etc.

Application Server Pools
Wiew assignment of application servers and databases to pools

TLE Processor
List of available functions, farmats and global variables of the TLE Processar

Figure 26: Call for the Shops object folder

.

Wiew the cache configurstion and analyze the cache utiization for the ePages application
SEFVEF.

PERL

Explore the ePages application server environment and PERL parameters such as version,
loaded modules, and so forth.

Database

iew details about the datsbase version and connection. List database tables.

Request

Wiewy data about brovwser reguests and the Wb server CGl environment.

APl

Wiew documentation of API functions and Perl modules

Database Models

Wiew: the undetlying database models of all cartridges in PDF format

On the page for the Shopsfolder, all the existing shops are listed are under Child Objects including the

Demoshop. See Figure 27.

Page 116

ePages 5 - Design and Cartridge Development Guide

XML Export Import / Export of database contents

WebUrlAdmin Mg dhahnert jena.epages defepagessStore admin/?ObjectPath=/Shops
WebUrlAdminSSL Http: dhahnert jena.epages defepagessStore admin/?ObjectPath=/Shops
WebUrISsL Http: ihahnert jena.epages defepagesiStore 17 ObjectPath=/Shops
Total 35
+ top

Child Objects

D Alias Class Inherit Sort order
2919 test3 Shop 1 o
2164 Test? Shop 1 o
Sy
l 4439 DemoShop Shop 1 a

s
+ top

Permissions
Trustee | MetaAction
Mo Ertry
Total O
+ top

Figure 27: Listing of all shops

Now click Demoshop to display the parameters for the demoshop:

epages @

* B -
Store + ePages 5 Diagnostics + System + Shops + DemoShop Guickbar | [Please Select] w | Your Account | Sign out

Object: DemoShop

OhjectiD 4489

Class Shop
Ohbject Path System f Shops /DemoShop I

Attributes

Hame

AcceptTac 1
AddProductStyle o
AddToBasketAction o

Figure 28: Parameters for the demoshop
In the top part of the page, you can see the following object path: System/Shops/DemoShop

Now enter the following command to export the delivery methods:

export.pl -storename Store -path */Shops/DemoShop™ -file ShippingMethods.xml
ShippingMethods

When entering the path information, you need to leave out System. The path is automatically extended
with the root object System. The statement says the following: export all the objects in the
ShippingMethods folder out of the demoshop database Storeinto the ShippingMethods.xmlfile.

This file is the basis for importing a new delivery method. Open the file and become familiar with the XML
structure.

When doing this, please note the following:

- The GUID (global unique identifier) for the object is indicated in the export file. In order to create new
objects, you must delete this GUID. Otherwise, the existing objects will be updated with the new data.
You can also use the option —withoutguids. Then, the GUID will not be exported.

- Atthe same time, pay attention to the alias. Do not change the alias. An existing object will be updated
with this alias.

- Use anew alias to create a new object.

ePages 5 - Design and Cartridge Development Guide Page 117

Import / Export of database contents XML Export

The new delivery method should be a method indicates how much the total should be to receive free
shipping and, for example, UPS delivery. Look for a fitting method in the file and overwrite the parameters.

After that, the file content should appear as follows:

<?xml version="1.0" encoding="utf-8"7>
<epages>
<I--export level 1-->
<Object Alias="ShippingMethods® Position="100" Inherit="1">
<ShippingMethodFreeLimit Alias="UPS" TaxClass="normal® Position="50"
IsDefault="0" Inherit="1" ContainerSubTotalAttrName="LineltemsSubTotal"
IsActivated="1" ShippingType="/ShippingTypes/ExemptionLimit">
<AttributelLanguage Language="ger® Name="UPS" />
<AttributeLanguage Language="eng®" Name="UPS*" />
<ShippingLevel UpperBound="100" CurrencylD="EUR" BaseValue="10"
TaxModel="gross”® />
<ShippingLevel UpperBound="80" CurrencylD="GBP" BaseValue="8"
TaxModel="gross”® />
</ShippingMethodFreeLimit>
</Object>
</epages>

Code example 69: XML structure for importing a delivery method

Save the changes. Finally, the edited XML file is imported again. For this, enter the following command in
the console:

import.pl -storename Store -path */Shops/DemoShop* ShippingMethods.xml

Again at this point, do not indicate the System. The data from the ShippingMethods. XML file are imported
into the Demoshopin the Store database.

In the MBO, you can check whether the new delivery method has been correctly imported:

Delivery and payment methods settings
Delivery methods e][Payment methods][’ Dependencies][Delivery options][Deferred payment]
d Delivery method Calculation model Default Sort order
D h@ Post Wweight of the products in the shopping basket @ 10
D h@ Express Delivery Fixed price O 0
LG tustomer Pickup Eree dalivery i
1 T
"] L@ ups Exemption limit) s0
|Seled entry) o 233
[] | [Select entry] Vl[Execute]
L ___|

Figure 29: new delivery method imported

Page 118 ePages 5 - Design and Cartridge Development Guide

Configuring Perl Script Tasks Scheduler

18. Scheduler

Within the application, there are various actions that can be or must be carried out at regular intervals. This
includes actions such as updating eBay offers or product availability, as well as, regular database "clean
up work".

The time-based execution of such actions works on a operating system-based scheduler concept.

The execution is performed by a Perl or (for UNIX) shell script. The timed execution plan for an action is
managed in a configuration file.

A task consists of the action to be performed and the time-based plan.

The scheduler maintains all of these tasks. Command line tools are used to start and stop the scheduler.

18.1 Configuring Perl Script Tasks

Perl script tasks are managed in the %EPAGES_CONFIG%/Scheduler.confconfiguration file. The
configuration file is in the INI file format. It is case sensitive. Each task has its own section whose title is
the name of the task. Comment lines begin with '#'. Each task is configured using the following parameters
in its section.

Table 21: parameters for task configuration

Parameter ‘Description

IsActive If this is not 1, the task is not run by the scheduler.

Command Perl script to be executed

Machine The task will be performed on the machines that are entered. If no machine is

entered, the task will be performed on all machines on the system.
When entering a machine, the first part of the host name, the computer name,
should only be entered.

Cron Execution time in UNIX cron tab format. If this is not set, the task will not be
executed under UNIX.

Schtasks Execution time in Windows schtasks format.

At Execution time in Windows at format. If neither schtasks or atis set, the task will
not be executed under Windows. If the Windows computer recognises the schtasks
command, atis ignored.

Options Options for the Perl script as defined in the command.

Loop Loops are used to run a Perl script multiple times with various loop options (in
addition to the standard options).
The value entered here must match an entry of the /LOOP/section.

For example, the section for the task AutomateAutoCrossSelling in the
%EPAGES _CONFIG%/Scheduler.conffile looks like this:

ePages 5 - Design and Cartridge Development Guide Page 119

Scheduler Creating New Perl Script Tasks

[AutomateAutoCrossSelling]

At=01:35 /every M,T,W,Th,F,S,Su

Command=

$ENV{EPAGES_CARTRIDGES}/DE_EPAGES/CrossSelling/
Scripts/automateAutoCrossSelling.pl

Cron=35 1 * * *

IsActive=1

Loop=Store

Machine=

Options=-nooutput

Schtasks=/st 01:35 /sc DAILY

Code example 70: example for task configuration in Scheduler.conf

Loops are used to run a Perl script multiple times with various loop options (in addition to the standard
options). You can see a #LOOP example here:

[LOOPS]

command loops (separated by *,")

Store=-storename Store

StoreEnvironment=-storename Store -environment DE

Backup=-storename Backup

BackupDB=-storename Backup -dbname storedb, -storename Backup -dbname sitedb

Code example 71: /LOOPS]section in Scheduler.conf
The last line explains, for example, that the Perl script is executed twice:

a. with the parameters -storename Backup -dbname storedb and
b. with the parameters -storename Backup -dbname sitedb

Changes to the %EPAGES_CONFIG%/Scheduler.conf configuration file will only be applied once the
scheduler is restarted. See Starting and Stopping, on page 121.

18.2 Creating New Perl Script Tasks

Perl script tasks are always defined within a cartridge. In the /Data/Scheduler/ directory of the cartridge,
the Scheduler.confconfiguration file has to be created. The tasks are configured here. This configuration
file has the same format as %EPAGES_CONFIG%,/Scheduler.conf.

The Perl script which belongs to this is usually contained in the /Scripts directory of the cartridge.

During cartridge installation, the sections from /Data/Scheduler/Scheduler.confare copied to
%EPAGES_CONFIG%/Scheduler.confif the section is not yet contained in
%EPAGES _CONFIG%/Scheduler.conf.

The following are also important to remember:

- Ifasectionis already contained in %£PAGES_CONFIG%/Scheduler.conf, it is not copied over during
installation.

- If Scheduler.confof the cartridge contains the Loop parameter that is not yet contained in the global
configuration file %EPAGES_CONFIG%/Scheduler.confin the [LOOPS]section, this section must be
added to the /LOOPS] section manually.

- Sections must be removed manually from the %EPAGES_CONFIG%/Scheduler.confif necessary.

18.3 Configuring UNIX Shell Script Tasks

Page 120 ePages 5 - Design and Cartridge Development Guide

Starting and Stopping Scheduler

Scheduler for UNIX shell scripts are configured globally in the $£PAGES_CONFIG/Scheduler.d/ directory. In
contrast to Perl script tasks, for which each task contains a section in the global configuration file, another
configuration file is created for each UNIX shell script task in $£PAGES_CONFIG/Scheduler.d/. The contents
of the configuration file for UNIX shell script tasks and the section for Perl script tasks are identical.

$EPAGES CONFIG/Scheduler.d/ contains the following files:
- appserver-*.env: Tasks that are processed by ep_appl (in the crontab)
- dbserver-*.env: Tasks that are processed by ep_db (in the crontab)

- webserver-*.env: Tasks that are processed by ep_web (in the crontab)

Other file names are not allowed. The .env files are case-sensitive (as are all files under UNIX). The
following is an example for the file dbserver-Rotatelogs.env, executed by ep_db:

#1/bin/sh

run? (1 - yes, else - no)

ISACTIVE=1

what?

COMMAND=""$EPAGES/bin/logfilemgmt.sh"

where? (separated by ","; unset -> any)

MACHINE=

when? (minute/hour/day of month/month/day of week) [see "man crontab®]
CRON=""7 * * * =

notify who? (unset -> $LOGNAME@localhost)

RECIPIENT=

search directory/ies for log files (separated by " *)
SEARCHDIRS=""$SYBASE_ASE_LOG"

-s SIZE[ckm]: required size (in bytes, KB, MB) to compress

SIZE="-s 10m"
-d DAYS: remove compressed files older than DAYS (unset -> don"t remove)
DAYS=

-a DIR: move compressed files into ARCHIVE directory

ARCHIVE=""-a $SYBASE_ASE_LOG/Archive"

-z ZIPPER: use compression instead of "gz® (allowed: gz,bz2,1zo,zip,Z2)
ZIPPER=

what command options?

OPTIONS=""$SI1ZE $DAYS $ARCHIVE $ZIPPER $SEARCHDIRS"

what command loop? (separated by *,")

LOOP=

Code example 72: example for the file dbserver-Rotatelogs.env

The variables /SACTIVE, COMMAND, MACHINE, CRON, OPTIONS and LOOPare processed by the scheduler.
All other variables are optional variables. The meaning of the variables matches the scheduler variable of
the Perl scripts. See 7able 21.

The RECIPIENT parameter contains the address where all error e-mails are sent.

The values of the variables must be quoted if they contain special characters (such as spaces, for example
in CRON).

The LOOPparameter contains all actual loops. In contrast to the Perl script scheduler, there is no shared
loop management.

18.4 Starting and Stopping

To execute scheduler tasks, help scripts have been placed in %EPAGES%/bi:

- epagesScheduler.cmd for Windows and
- epagesScheduler.sh for Unix

ePages 5 - Design and Cartridge Development Guide Page 121

Scheduler Scheduler Task Output

The following arguments can be used for the scripts:

Table 22: Arguments for scheduler scripts
Argument Description
start Starts all scheduler tasks from %EPAGES CONFIG%,/Scheduler.confor from

%EPAGES_CONFIG%/Scheduler.d/*.env, meaning that the tasks are entered in the
scheduler tables (crontab, at/schtasks table)

stop Stops all scheduler tasks from %EPAGES_CONFIG%/Scheduler.confor from
%EPAGES_CONFIG%/Scheduler.d/* env, meaning that the tasks are removed from
the scheduler tables (crontab, at/schtasks table)

Running processes are not stopped.

show Shows all running scheduler tasks from %EPAGES_CONFIG%/Scheduler.conf or
from %EPAGES_CONFIG%/Scheduler.d/* env

Tasks are put in the following CRON tabs in UNIX:

Perl script tasks in the ep_appl-crontab,

Shell script tasks that begin with appserver-are entered into the ep_app/crontab,
Shell script tasks that begin with dbserver-are entered into the ep_db crontab,
Shell script tasks that begin with webserver- are entered into the ep_web crontab

In UNIX, the scheduler is restarted with the following command:

/etc/init.d/epages5 start
as follows:

- - starts the tasks for ep_web
- - starts the tasks for ep_appl
- - starts the tasks for ep_db

The tasks which are to be executed run inside a task wrapper. For UNIX, this looks as follows:

351 * * * /opt/eproot/bin/wrapScheduler._.sh AutomateAutoCrossSelling
In Windows, the wrapScheduler.cmd is opened. The task wrapper executes the following commands:

1. Ifthereis afile %EPAGES_CONFIG%/Scheduler.d/TASK.env (here AutomateAutoCrossSelling.env), the
task is performed as a shell script. If the task does not begin with appserver-, dbserver- or webserver-,
it will not be executed. The environment, that is defined in %£EPAGES CONFIG%/Scheduler.d/*.envis
loaded and COMMAND with OPTIONS is executed.

2. Ifthereis a TASK section in %EPAGES_CONFIG%/Scheduler.conf, the task is executed as a Perl script
that is executed with the options defined in that section.

The task is only executed if the previous task has been completed. If the task is still running (and the

TASK.pidfile exists, for example $EPAGES_LOG/Scheduler/cyansun.AutomateAutoCrossSelling.pid), an
error e-mail is sent.

18.5 Scheduler Task Output

For Perl script tasks, all error e-mails are sent to the £rror-Mail-Address entered in the TBO. For shell script
tasks, the error e-mails are sent to the value for the RECIPIENT variable in the .env file.

The tasks have various output files MACHINE.TASK.EXT that are saved in the following directories
depending on the user:

Page 122 ePages 5 - Design and Cartridge Development Guide

Scheduler Task Output Scheduler

- ep_appl: $EPAGES_LOG/Scheduler

- ep_db: $SYBASE/ASE-12_5/init/logs

- ep_web: $HTTPD_ROOT/logs

The following task output files are written by the wrapScheduler.cmd or wrapScheduler.sh:
Table 23: Task output files

Task output file ’Description

MACHINE.TASK.pid [Shows that the previous TASK is not yet finished, contains the Process ID

(temporary) MACHINE.TASK.log in UNIX.
MACHINE.TASK.pid [Contains (error) output from all previous TASK calls
(permanent)

MACHINE.TASK.run [Contains (error) output of the task: if this file is not empty, an error e-mail will be
(temporary) written and the MACHINE.TASK.log is appended

MACHINE.TASK.head [If a header is contained that, if .run is not empty, is attached together with .run and
(temporary) appended to .log

MACHINE.TASK.mail |E-mail that is sent, contains .head and MACHINE.TASK.run
(temporary)

MACHINE. TASK. head usually looks like this:

*** Qutput from program $RUN_SCRIPT ***
COMMAND: $COMMAND $OPTIONS > $LOG_FILE.run 2>&1
LOOP: $LOOP

DATE: $DATE

HOSTNAME: $HOST

USERNAME: $LOGNAME

ePages 5 - Design and Cartridge Development Guide Page 123

Installation Diagnostics Cartridge

19. Diagnostics Cartridge

The Diagnostics cartridge is a tool for displaying object and class structures, as well as database content.
This tool can be used by both developers and designers, for example, for tracing lines of inheritance, for
assigning PageTypes to objects or for querying actual attribute content.

The Diagnostics cartridge is included in the default installation, but needs to be installed separately.

19.1 Installation

The diagnostics cartridge is delivered in the %EPAGES CARTRIDGES%/DE_EPAGES/Diagnostics directory,
but may need to be installed:

1. perl Makefile.pl
2. make install STORE=Store

Storeindicates the business unit in which you install the cartridge. The %EPAGES-CONFIG%/Database.conf
file indicates the databases for Store. You can install the cartridge for all the databases. This give you an
overview of all the objects including their content and relationships that are saved in the respective
database.

Caution:You can use the Diagnostics cartridge to access the database directly. If you use the cartridge
on live systems, you need to change the default password immediately in order to prevent unauthorized
access.

19.2 Usage

Call the cartridge using the following URL:

http://<servername>/epages/<db>. diagnostics/?ViewAction=ViewDiaglndex

Here ¢servernamesis the name of the server where the installation is running and ¢«db»sis the database that
you want to examine with the cartridge, for example Store. Of course, the cartridge for the database needs
to be installed.

First, the sign-in page is displayed where you need to sign in. The default user name is developerand the
default password is also developer.

Caution:You can use the Diagnostics cartridge to access the database directly. If you use the cartridge
on live systems, you need to change the default password immediately in order to prevent unauthorized
access.

Change the sign in data in YourAccount, see Figure 30.

After the call, you see the tool introduction page. See:

ePages 5 - Design and Cartridge Development Guide Page 125

Diagnostics Cartridge Usage

Quickbar

Store + ePages 5 Diagnostics Your Account | Sign out

Diagnostics Index

+ All Classes + All Groups
List defined classes. YWiew class details (attributes, actions, and so on) List the user groups. View group dependencies and members
+ System Object s AllUsers
Ohijects are organized within folders beneath the system root. Explore the hierarchical List uzers and view group membership. Access user details
object tree.

All Languages
All PageTypes Wiew languages that are activated for the site.
List defined page types. View details such as template file names and so on

Cache Statistics

+ All Shops Wiew the cache configuration and analyze the cache utiization for the ePages application
See contents of the 'Shops' folder, explore shop content and brovese the shop's folder FErver.
structure. + PERL

+ Installed Cartridges Explare the ePages application server environment and PERL parameters such as version,
List installed cartricdaes with version informstion. Find cartridge dependecies. Ioaded modules, and so forth.

+ All Hooks + Database
Wi all available hooks. Viewe functions that use a hook. ‘iewy details about the database version and connection. List database tables.

+ AllWebServices + Request
List available web services. View parameters such as coverad functions, etc. Wiewy data sbout broveser regquests and the Web server CGl environmert.

+ Application Server Pools +« APl
Wiewy assignment of application servers and databsses to pools Wiewy documentation of AP functions and Petl modules.

TLE Processor Database Models

Lizt of availakle functions, formats and global variables of the TLE Processor Wiewy the undetlying database models of all cartridges in POF format

Figure 30: Diagnostics tool

Note: The package name is liked to the APl documentation in the class structure. This is then opened in
a separate window.

Page 126 ePages 5 - Design and Cartridge Development Guide

Part IV:

Design

Selection Styles Styles

20. Styles

A style contains all necessary information to display shop pages in the browser with structure, layout, and
design. You can use styles to customize the Web pages of your ePages installation to fit your needs. Styles
present an easy way to make storefront changes without changing templates or PageTypes.

The design of Web pages (colours, fonts, and so on) and the layout occurs using Cascading Style Sheets.
The storefront display is generated from the style information of the respective StorefrontStyle.css file.

Working with styles is described in the following sections. Additional examples are shown in Appendix C:
Usage Examples (UE), on page 177.

20.1 Selection Styles

Display in the shop is done using selection styles. These are listed in the MBO and the merchant selects
the appropriate one under Styles.

The instructions for display are provided in XML files. Each selection style has a directory with the ID of the
style which contains the necessary XML files. During selection of the style, the XML file is imported, the
StorefrontStyle.cssis generated from that and saved in the directory selected. This StorefrontStyle.cssis
used by the browser for display of the shop.

New selection styles are made available using cartridges. Each cartridge is created in its own directory:
<Cartridgename>/Data/Public/SF/Styles/<styleName>
The following files must be placed in the respective directory for the selection style:

Table 24: Selection styles files
File ‘Description

export.xml contains attributes and values for the display of selection styles

img_small_stylepreview.gif 174 x 107 px — small preview graphic

img_medium_stylepreview.gif 450 x 280 px — medium preview graphic

img_colorpreview.gif 16 x 16px graphic — preview colour variation

StyleExtension.css Stylesheet file for extension

In addition, background images and icons also belong to a style. These are available in their own image
and icon sets. For each set type, there is another directory in the cartridge:

<Cartridgename>/Data/Public/SF/ImageSet/<imageSetName>

<Cartridgename>/Data/Public/SF/l1con/<iconSetName>

20.1.1 Creating Selection Styles

A selection style can be created as follows:
1. Extended design possibility activated in MBO

The MBO design tool offers the ability to export existing styles. This allows you to easily create the
required XML format. To do so, remove the entries

#REM<!-- and -->#ENDREM

from the following templates:

ePages 5 - Design and Cartridge Development Guide Page 129

Styles

Selection Styles

%DEPAGES_CARTRIDGES%/DE_EPAGES/Design/Templates/MB0O/Styles/MBO-
Styles._TabPage.html

%DEPAGES_CARTRIDGES%/DE_EPAGES/Design/Templates/MBO/Layout/MBO-
Layout.TabPage.html

This will activate and display the export function for each style.
Manage the design using the design tool

Create a new style called MyStylein the MBO based upon an existing style. You will find a more
detailed description of the design tool in the in the Merchant User Guidein the Design chapter.

Note: You should not upload images, but provide them using an image set. For more on this, see
Creating an Image Set, on page 131.

Export style

Click in the style list at MyStyle on the Export link. The export.xm/file will be saved in the following
directory.

%EPAGES_WEBROOT%/Store/Shops/<ShopName>/Styles/MyStyle

Create a cartridge and copy the file to the cartridge directory:

/Data/Public/SF/Styles/MyStyle

Remove the following from the file:

<Style reference="1" Alias="MyStyle">
<l--export level 2--—>
<Style StyleTemplate="/StyleTemplates/MileStones” reference="1" Path="_"
/>
</Style>

Code example 73: Selection from Dictionary.en.xm/
Preview images and file StyleExtension.css creation

Place all additional files from 7able 24 in the same directory. The StyleExtension.css fill can remain
empty.

Register selection style in the database

The new style must be registered in the database. To do so, create the StyleTemplates.xmlfile in the
cartridge directory:

/Database/XML/

The source code is as follows:

Page 130 ePages 5 - Design and Cartridge Development Guide

Selection Styles Styles

<?xml version="1.0" encoding="utf-8"7>
<epages>
<StyleTemplates reference="1" Class="0Object" Alias="StyleTemplates''>
<StyleTemplate Alias="MyStyle" StyleDir="SF/Styles/MyStyle"
CustomizeLevel="1" delete="1">
<Attributevalue Name="Name'" Language=''de'" Value="'MyStyle" />
<Attributevalue Name="Name'" Language="‘en' Value="MyStyle' />
</StyleTemplate>
</StyleTemplates>
</epages>

Code example 74: StyleTemplates.xm!
After this, the style will appear after installation in MBO » Styles at Templates » Show all templates.
6. Assign selection style to a category

The new style should be assigned to a specific style category. To do so, create the StyleGroups.xm!lfile
in the cartridge directory:

/Database/XML/

The source code is as follows:

<?xml version="1.0" encoding="is0-8859-1"7>
<epages>
<StyleGroups reference="1" Class="Object" Alias="StyleGroups">
<StyleGroup reference="1" Alias="BusinessSection'>
<Object reference="1" Alias="SubStyleGroups'>
<StyleGroup reference="1" Alias="Touristic">
<StyleGroupMap StyleTemplate="/StyleTemplates/MyStyle"
Position="5" />
</StyleGroup>
</Object>
</StyleGroup>
</StyleGroups>
</epages>

Code example 75: StyleGroups.xml

After this, the style will appear after installation in MBO » Styles at Templates » Display by sector »
Travel & Tourism.

7. Install the cartridge.

Install the cartridge as described in chapter Cartridges, on page 81. During installation, the preview
images and files from the cartridge directory

/Data/Public/SF/Styles/MyStyle
are copied to the following directory:
%EPAGES_WEBROOT%/Store/SF/Styles/MyStyle

The StyleTemplates.xmland StyleGroups.xmlfiles are imported into the database. After that, the new
style is available. Delete all caches to show the current display.

20.1.2 Creating an Image Set

The image set contains background images, logo, and content-separators. The image set is in the Style
cartridge in the cartridge directory

ePages 5 - Design and Cartridge Development Guide Page 131

Styles Selection Styles

/Data/Public/Store/SF/ImageSet

We will assume that you have placed a new style there according to Creating Selection Styles, on page 129.
To create the image set for this style, proceed as follows.

1. Export/save new style

If you have already installed the cartridge and edited the new style with the design tool, export it. Then
you will have a current export.xmlfile. Copy this into the respective directory of your cartridge.

2. Copyimage set

Use a previous template for your image set. The standard image sets are found in at

%EPAGES_WEBROOT%/Store/SF/ImageSet

There is a directory with the name of the image set for each image set. Copy the content of an image
set directory in your cartridge in the following directory

/Data/Public/ImageSet/MylmageSet

MylmageSetis the name of your new image set. The graphics file can be edited as necessary.

Note: You should always use all graphic files of the set. Save unnecessary graphics as transparent
GlFs.

3. Register the image set

The name of the image set must be entered into export.xml. Use the Layout/imageSet parameter to set
which image set belongs to the style. Look for this parameter in export.xml/and define it as follows:

LayoutlImageSet="SF/ImageSet/MylmageSet”
4. Install the cartridge
If the cartridge is already installed, you must uninstall it first. For more details see Uninstalling, on
page 8é.

Install the cartridge as described in Creating Selection Styles, on page 129in the corresponding
section. This imports the feature into the database

%EPAGES_WEBROOT%/Store/SF/ImageSet

and is available for the new style.

20.1.3 Creating an Icon Set

Icon sets are created similar to image sets. The following differences exist:

- lcon sets are placed in the cartridge directory at

/Data/Public/SF/I1con
Each icon set has its own directory with the name of the icon set.

- The defaulticon sets are in the directory

%EPAGES_WEBROOT%/Store/SF/1con

Page 132 ePages 5 - Design and Cartridge Development Guide

Selection Styles Styles

The new icon set will be saved in this directory during installation. The parameter for assigning icon
sets in the export.xmlfile is called LayouticonSet.

20.1.4 Sub-Styles

Variations can be created for styles. These are called sub-styles. The main usage case is for colour
variations. The sub-styles are created in their own directories in the subdirectory /Sub-Styles of their
respective parent styles

<Cartridgename>/Data/Public/SF/Styles/MyStyle/SubStyles

and during installation are copied in the respective subdirectory:

%EPAGES_WEBROOT%/Store/SF/Styles/MyStyle/SubStyles/<substylename>

Sub-styles can be generated as described in Creating Selection Styles, on page 129. However, the
following exception applies:

The StyleTemplates.xmlfile for sub-styles looks like this:

<StyleTemplate Alias="MyStyle" StyleDir="SF/Styles/MyStyle" CustomizelLevel="1"
Position="5" delete="1" >
<Object Alias="SubStyleTemplates'>
<StyleTemplate Alias="Red" StyleDir="SF/Styles/MyStyle/SubStyles/Red"
CustomizelLevel="1" Position="10"/>
<StyleTemplate Alias="Blue" StyleDir="SF/Styles/MyStyle/SubStyles/Blue"
CustomizelLevel="1" Position="20"/>
</Object>
</StyleTemplate>

Code example 76: StyleTemplates.xml!for sub-styles

The StyleGroups.xmlfile for sub-styles looks like this:

<StyleGroupMap reference="1" StyleTemplate="/StyleTemplates/MyStyle" >
<StyleTemplateVariation
StyleTemplate="/StyleTemplates/MyStyle/SubStyleTemplates/Red"
Position="10" />
<StyleTemplateVariation
StyleTemplate="/StyleTemplates/MyStyle/SubStyleTemplates/Blue™
Position="20" />
</StyleGroupMap>

Code example 77: StyleGroups.xm/for sub-styles

The image sets for sub-styles are also located in the same place as the image set of the corresponding
parent style. No subdirectories are used. The directories for sub-styles and image sets should contain the
names of the parent styles. The directory for the image set of the sub-style Sportunder the parent style
Basic should be called BasicSport.

ePages 5 - Design and Cartridge Development Guide Page 133

Appendixes

Page Caching General Procedures

Appendix A: Performance Tuning

21. General Procedures

A key requirement of your ePages system is good performance. You can do this in various areas, during
installation, using configuration files up to optimising HTML and PERL source code.

The following sections contain descriptions of ways to improve performance.

21.1 Page Caching

In caching, itis important to determine the balance between performance and updated content of your
pages. You have the ability to cache entire HTML pages.

During caching HTML pages, these pages are saved as files and shown unchanged by later requests. The
setting for this caching can be managed in the merchant administration with the Optimisation function in
the menu item Settings. For more about this, read the corresponding chapter in the Merchant User Guide.
Generally, you should have the longest possible length of validity for the pages and, when necessary,
manually update for changes to pages.

Another possibility to improve performance through caching is to partially cache templates. For more on
this, see Partial Caching, on page 144.

| Note: The expiration time set for caches in optimisation applies to page caching and partial caching. I

21.2 Template Processing

In addition to saving complete HTML pages, pre-compiled files are cached that only require the current
dynamic content to be reloaded --these are the ctmpl/files. For more information about cfmp/files, refer to
Template Process, on page 31.

You can deactivate verification of the timestamp for ctmplfiles. Possible changes are not tested any more
and the page will be compiled from existing compiled data with new data from the database. Managing
this verification is done with the parameter DisableCtmipStatin the file

%EPAGES_CONF%/DataCache .conf

Table 25: Parameters for DisableCtmipStat
Parameter HDescription

DisableCtmplStat =0 This setting is the default and tests the HTML and XML files for a possible
update time.
DisableCtmplStat =1 If this is set, the verification is skipped.

Caution: If DisableCtmplStat =1, changes to the templates (* Atm) and Dictionaries (for example
* de.xm) will no longer be visible. This setting should only be made with a live system.

ePages 5 - Design and Cartridge Development Guide Page 137

General Procedures Process Priorities

Note that if you deactivate the cfmp/test, the HTML pages are not updated as often. If you create the HTML
pages again in the status using Optimization, the existing compiled data is used and substituted with
current data. New compiled data are not created, even if changes exist to templates or language files.

21.3 Process Priorities

In the section /GLOBALJ of the file

%EPAGES_CONF%/WeblInterface.conf

priorities for various processes are determined. With these configuration possibilities, long-running
processes such as imports, duplication, and so on can be prioritised.

The reduces the wait for other requests because the server is not blocked through long-running processes.
A detailed customisation of priorities depends however upon the computer configuration.
Such settings are, for example.

Table 26: Process Priorities

Process Priority Description

PRIORITY=HIGH The application server runs with this priority
MONITOR_PRIORITY=ABOVE_NORMAL Priority that the application server performs requests in
monitor mode.

MANUAL_MONITOR_PRIORITY=NORMAL |Priority that the application server executes requests in
manual monitor mode (imports and so on.)

The default setting is:

- PRIORITY=ABOVE_NORMAL
- MONITOR_PRIORITY=ABOVE_NORMAL
- MANUAL_MONITOR_PRIORITY=NORMAL

Note: For Linux/Unix, these processes cannot be set higher than NORMAL without having root
permissions. This permission is not available for the user ep_app/under which the ePages service runs.

21.4 Reducing Response Times of the Initial Request

As soon as the initial request is sent to one of the application servers, this cache is filled with information
about the object structure and PERL modules are compiled. This creates a fairly long request time. This
initial request time can be reduced by loading the object structure during start of an application server and
pre-compiling the PERL modules. To do so, in the file,

%EPAGES_CONF%/Hooks . conf

comment out the entry

[AppServerStartup]
; DE_EPAGES: :Presentation: :Hooks: :AppServerStartup: :OnAppServerStartup=10

by removing the semicolon.

21.5 Debugging Information

Page 138 ePages 5 - Design and Cartridge Development Guide

Shop Settings General Procedures

For the basics about debugging information, refer to 7emplate Debugging, on page 36. Debugging
information about source and runtimes of includes increase the load time of the HTML pages that must be
loaded. This increases loading times. Turn off debugging mode in live operation in the file

%EPAGES_CONF%/l1og4perl _conf
by commenting out the entry
log4perl.category.DE_EPAGES: :Presentation::APl::Template: : INCLUDE=DEBUG

Put a semicolon in front of it.

21.6 Shop Settings

Performance can be improved by using specific settings in the merchant administration. Here are some
examples:

- The number of products on the home page increases loading time (depending upon optimisation
settings)

- Check the number of promotional products, since these products all need to be loaded when
displaying the navigation element Promotional products (depending upon optimisation settings).

- hide unnecessary navigation elements

21.7 System Monitoring with Spy.pl

Use the spy monitor to verify the request router activity and data. This provides an overview of all
application servers of an installation. Use the monitor to see information used to optimise the system and
increase performance. These information include:

- Where do cache overflows come from?

- How fast are the machines?

- What is the utilisation of each individual machine?
- How is the system balanced?

Start the monitor after installation with the following URL:

http://<yourserver>/Monitor/spy.pl

After sending the requests, a Web site with various sections is shown that is reloaded every 5 seconds. The
following sections are shown:

CacheStatistics section
Contents:

- Type and number of the cache updates of each application server
- Saved data which are communicated between application servers

Columns:

- Pool: application server pool name

- ServerlP:Port server IP and port address

- PID: - process identifier

- Status: idle/busy/reserved

- LastContact: - last contact in seconds

- Overflow: - RR has cache overflow for this AS

ePages 5 - Design and Cartridge Development Guide Page 139

General Procedures System Monitoring with Spy.pl

- CacheltemCount: count of cache updates
- Cacheltems: - cache update entries

Serversection
Contents:
- Listing of all application servers

- Pools to which the application servers are assigned
- Other parameters such as current request, last URL, last page

Columns:

- Pool: application server pool name

- ServerlP:Port: server IP and port address

- PID: process identifier

- Status: idle/busy/reserved

- LastContact: last contact in seconds

- Hits: count of requests

- LongReq: count of long requests (longer than 5 seconds)
- MeanReq: count of normal requests (less than 5 seconds)
- MeanTime: mean execution time (for requests less than 5 seconds)
- Cacheltems: count of cache updates

- Site: current/last request was assigned to this site

- URL: current/last request URL

Pools section
Contents:
- Listing of all application server pools

- How many and which application servers are assigned to the individual pools
- Overview of cache data

Columns:

- Name: pool name

- ldleServer: count of idle servers

- CountServer: count of servers assigned to pool

- CountMC: count of other MessageCenters/RequestsRouters (which have AS of this
pool)

- CountServerCache: count of update cache entries for AS

- CountMCCache: count of update cache entries for other MC

RequestRouters section
Contents:

- List of all request routers with IP, port, status, and ping

Columns:

- ServerIP: IP address of MC/RR

- Port: port address of MC

- Status: currently started -1 (not pinged), not alive 0, successfully pinged 1
- LastPing: last contact

21.7.1 Installation

Page 140 ePages 5 - Design and Cartridge Development Guide

System Monitoring with Spy.pl General Procedures

You can find the spy.p/file in the %EPAGES_SHARED % \Monitordirectory after installation.

Check whether the following entry is located in the Web/nterface.confin the section for the request router:

MONITOR=10041
If the entry is not there, add it.
Installation on Windows with IIS 6

- You can perform a test by executing the spy.p/script from the command line. If information is shown in
the console, the request router is running and the required permissions exist.
- Create avirtual directory in lIS 6 for the standard Web site for the directory which contains spy.pt.

1. Default Web site » New » Virtual directory » Alias: Monitor, Path: "%EPAGES_SHARED\Monitor
2. Setthe following permissions for the virtual directory: READ, EXECUTE
3. Enterthe following mapping for the virtual directory (Monitor » Properties » Virtual directory »
Configuration » Assignments):
Executable file: "<epages5directory>\Perl\bin\perl.exe "%s" %s"
Extension: ".pl"

- Inthe server extensions, set "All unknown CGI extensions" to "Allowed"
- RestartllS6

Installation on UNIX
- Set the permission:

- . /etc/default/epages5

- cd $EPAGES_SHARED/Monitor
- chown ep_appl:ep_web *.pl

- chmod u=rwx,g=rwx *.pl

- Edit Attpd.conf

- ScriptAlias /Monitor/spy.pl "/opt/eproot/Shared/Monitor/spy.pl"
- <lLocation /Monitor/*>
Order Deny,Allow
Deny from all
Allow from <IP-Adresse»
</Location»

ePages 5 - Design and Cartridge Development Guide Page 141

Template Analysis Procedures During Development

22. Procedures During Development

During development, you can use specific methods or use specific functions in order to improve the
performance of your system, for example, create high-performing cartridges.

22.1 Template Analysis

It is important to determine which execute times the individual includes show. With this information, you
can identify the includes that increase the loading times of a template.

One possibility is to activate debugging information. See Debugging Information, on page 138.
This allows you to determine all includes and their execution times.
Using the TLE function 7imeThis, you can determine the execution time of individual includes. The

following TLE block measures the execution time of the INCLUDE template Body and shows this in red on
the Web site.

#BLOCK('TimeThis", "Body', 1)
#INCLUDE("'Body"")
#ENDBLOCK

Code example 78: Measuring the execution time of an include

The 7imeThisblock can also be used for section within a template. If the second parameteris Oor not
provided, the time is shown in the HTML as HTML commentary.

Another possibility to see an overview of all template includes is to execute the script analyzelncludes.plin
the directory

%EPAGES_CARTRIDGES%\DE_EPAGES\TLE\Scripts

The following example shows the usage and the output:

ePages 5 - Design and Cartridge Development Guide Page 143

Procedures During Development Partial Caching

perl analyzelncludes.pl http://dmo/epages/Store.sf/?0bjectPath=/Shops/DemoShop
get http://dmo/epages/Store.sf/?0bjectPath=/Shops/DemoShop 1.438
0.094 BasePageType.Head
0.031 SF.Title
0.016 BasePageType.Script
0.016 BasePageType.Script-Base
0.000 SF._Head-ContentType
0.016 SF.Style
0.016 SF-Shop.MetaTags
1.156 SF.Body
0.000 SF.INC-Etracker
1.125 SF.Layout
1.125 SF.Layoutl
0.125 SF.Header
0.016 SF.ShopName
0.063 SF.LoginBox
0.016 SF.LoginBoxLinks-UserLostPassword
0.000 SF.LoginBoxLinks-Register
0.016 SF.LoginBoxLinks-Newsletter
0.031 SF.ProductSearchBox
0.094 SF_NavBarTop
-000 SF.HomePagelLink
-016 SF.ImprintLink
.016 SF.ContactLink
.016 SF.TermsAndConditionsLink
.016 SF.CustomerlInformationLink
-.016 SF.BasketLink
0.078 SF_NavBarTop
.016 SF.HomePagelink
-016 SF.ImprintLink
.000 SF.ContactLink
-000 SF.TermsAndConditionsLink
.016 SF.CustomerInformationLink
-016 SF.BasketLink
0.266 SF.NavBarlLeft
0.016 SF.TrustedShopSeal
0.016 SF.ProductSearchBox
0.063 SF._CategoriesListBox
0.156 SF.SpecialOfferBox
0.000 SF.InfoText
0.281 SF-Shop.Content
0.125 SF.NavBarRight
0.016 SF.MiniBasketBox
0.031 SF.CurrencyBox
0.016 SF.SpecialOfferLink
0.063 SF.LoginBox
0.000 SF.LoginBoxLinks-UserLostPassword
0.016 SF.LoginBoxLinks-Register
0.016 SF.LoginBoxLinks-Newsletter
0.063 SF.NavBarBottom
0.000 SF.Copyright
0.031 SF.Logo
0.016 SF.TrustedShopSeal
0.094 SF.Footer
0.063 SF.LocaleFlags
0.000 SF.Copyright
0.031 SF._ExternalHomePageLink
Total: 1.25

Code example 79: Listing all includes of a URL with their execution times

cNeoNoNoNoNe)

cNoNoNoNoNe]

22.2 Partial Caching

Use partial caching to determine whether individual template sections are created on-demand or loaded as
prepared HTML code. This allows you to possibly reduce the time for creating the required page.

Page 144 ePages 5 - Design and Cartridge Development Guide

Partial Caching Procedures During Development

The TLE function Cached/nclude executed within a #BLOCK instruction is the basis for this. The syntax for
the function is:

#BLOCK(**CachedInclude™, <object> , <filename>) ... #ENDBLOCK

In object, enter an object for which the data will be cached. The static HTML code is saved under the file
filename.

Caching refers to the complete content within the #8LOCK'command. After processing the #BLOCK
command, the created HTML code is shown as a static HTML file under the entered name. During the next
page request, the function Cached/ncludewill test whether the file exists. If it exists, the HTML code will be
used from the file.

Partial caching is a great idea for templates that do not have a very high number of possible variations.
This also applies to templates or includes which have the same content for long periods of time.

Templates that contain user-specific data, for instance, such as shopping basket or user-specific product
prices should not be cached, as then the data shown are not current.

In general, you should only investigate very slow includes for partial caching, as otherwise the overhead for
caching also requires execution time.

Examples of partial caching are lists of promotional items or navigational elements, since these are shown
the same for everyone normally.

The files are created in the directory

%EPAGES_STATIC%/Store/Shops/<shopname>/

A file like this should be as general as possible to be able to use in as many places as possible. However,
every variation must have its own file. Therefore, the file name has a special meaning. If the name does not
describe the variation clearly, files will be overwritten. Then the various contents will no longer be
available. Not too many files should be created, however, in order to avoid too much system stress.

The following applies to file names:

- The file name consists of multiple sections.

- One part describes the content of the page area that is cached.

- One part consists of a TLE whose content defines the respective variation.
- These parts are separated by an underscore _.

- The GUID is prepended by the system.

- Thefile ending is content.

The following example demonstrates this:

#BLOCK("'CachedInclude, #Shop.Object, ''SF_SpecialOfferBox"™ . #CachelncludesNames)

HENDBLOCK

Code example 80: Configuring partial caching

The object, for whose display a specific area is cached is the sAop object. The area which is supposed to
be cached is in the storefront area, in which the promotional products are shown. It is defined in
SF.SpecialOfferBox. The TLE #CachelncludesNames contains information about the current display
language, see 7able 27. This TLE is used if the content changes only dependent upon the language.

For German as the display language, the file name is:

INC-436B4797-2D4C-607A-5558-AC14080F2485-SF . SpecialOfferBox_de.content

ePages 5 - Design and Cartridge Development Guide Page 145

Procedures During Development Using #LOCAL Instructions

During the next call of this section, the system generates the file name using this TLE, notices that HTML
content is saved for deand uses it immediately.

For English as the display language, the file name is:

INC-436B4797-2D4C-607A-5558-AC14080F2485-SF . SpecialOfferBox_en.content
Depending upon language settings, the correct HTML code can then be used.
The following TLE's are predefined:

Table 27: Filename TLEs for Partial Caching

TLE ‘Contents

CachelncludesNames Contains the language

CachelncludesPrices Contains language, region, and currency

CachelncludesPager Contains the table, sorting, sort order, table length (number of rows), and

number of show page numbers in the footer of the table of the current page

CachelncludesPagerPrices [Contains language, region, currency, current page of the table, sorting, sort
order, table length (number of rows) and number of pages shown in the
footer of the table

As an example, we will change for Code example 80, on page 145 the TLE:

#BLOCK(*'CachedInclude",
#Shop.Object, "SF.SpecialOfferBox" . #CachelncludesPrices)

#ENbéLOCK
Code example 81: Changed TLE

This creates the following new file name:

INC-436B4797-2D4C-607A-5558-AC14080F2485-SF . SpecialOfferBox_de_de DE_EUR.content

22.3 Using #LOCAL Instructions

During processing of lists, attributes or elements should not be read out multiple times, but instead should
be provided as local variables.

Use the #LOCAL instruction to accelerate recurring access to hierarchal object structures.

The following example demonstrates this:

#LOOP (#Category.Products)#NameOrAlias #ENDLOOP
#IF(NOT #COUNT (#Category.Products)) list empty #ENDIF

Code example 82: Recurring object reads

In Code example 82, for every run the object hierarchy is queried. This is relatively time-consuming. The
much faster variation is to read the products of the corresponding category and to save them in a TLE
variable. During the run, this variable is always accessed:

Page 146 ePages 5 - Design and Cartridge Development Guide

Separating Complex TLE Blocks Procedures During Development

#LOCAL ("'CategoryProducts', #Category.Products)
#LOOP (#CategoryProducts) NameOrAlias #ENDLOOP
#IF(NOT #COUNT (#CategoryProducts)) list empty #ENDIF
H#ENDLOCAL

Code example 83: Using the #LOCAL instruction to improve performance

22.4 Separating Complex TLE Blocks

Separate complex TLE blocks or TLE functions or class attributes into their own code blocks. However, do
not move the HTML into PERL functions.

The following example demonstrates this method: It should show a list of all visible products. The number
of found products is shown from the list. A purely HTML solution is shown here:

#LOCAL(""TempProducts', #Products)
#LOCAL('VisibleProductsCounter',0)
#LOOP (#TempProducts)
#1F(#1sVisible)
#SET(""VisibleProductsCounter", #VisibleProductsCounter + 1)
#ENDIF
#ENDLOOP
count of visible products = #VisibleProductsCounter
#ENDLOCAL
#LOOP (#TempProducts)
#IF(#IsVisible)
#NameOrAlias #Description
#ENDIF
#ENDLOOP
#ENDLOCAL

Code example 84: Function, HTML coded

You can improve the performance of this function in that you collect the data with a PERL function, process
them, and save in TLE variables and only show the results in HTML:

sub getAttributes {
shift;
my ($Object, $aNames) = @_;
my $hinfo = {};
foreach my $Name (@$aNames) {
it ($Name eq "VisibleProducts®) {
$Shinfo->{$Name} = [grep { $_->get("IsVisible") } @{$O0bject-
>get("Product®)}];
3

return $hinfo;

Code example 85: PERL function for data preparation

This function is then used in the HTML source code.

#LOCAL('TempVisibleProducts', #VisibleProducts)
count of visible products = #COUNT(#TempVisibleProducts)
#LOOP(#TempVisibleProducts)
#NameOrAlias #Description
#ENDLOOP
H#ENDLOCAL

Code example 86: Show data in HTML based upon the prepared TLE

ePages 5 - Design and Cartridge Development Guide Page 147

Creating a MailType Adding E-Mail Events

Appendix B: Developer Notes

23.Adding E-Mail Events

To be able to add your own e-mail events to the system, do the following:

- Creating a MailType

- Creating a PageType and Assigning it to a Template
- Implementing the function

- Register the action

- Define the permission

Encapsulate the function into a cartridge as usual. For information about individual steps, we can refer to
the ContactForm cartridge.

23.1 Creating a MailType

MailTypes are defined in the file MailTypeTlemplate* xml. You can substitute any file name extension for
the asterisk (¥). The file must be saved in the /Database/XML directory.

You will find the necessary source code in Code example 87.

<?xml version="1.0" encoding=""1s0-8859-1"?>
<epages>
<System reference="1" Path="/">
<MailTypeTemplates Class="Object” Alias="ShopMailTypeTemplates'>
<MailTypeTemplate Alias="ShopContactForm"
PageType="/PageTypes/Mai l-ShopContactForm"
HasToField="1" delete="1">
<AttributevValue Name="Position® Value="20" />
</MailTypeTemplate>
</MailTypeTemplates>
</System>
</epages>

Code example 87: MailType definition

You can enter optional parameters for the MailType definition that provide the necessary entry fields to the
detail view of the corresponding e-mail event. These parameters are:

Table 28: Parameters used for MailType Definition
Parameter ‘Description ‘

HasSubject="1" The entry field for the subject line is shown and the merchant can enter a
subject.

HasAdditionalText="1" |The entry field for additional e-mail text is shown and the merchant can enter the
corresponding content.

HasHeader="1" The entry field for a header is shown above the standard text and the merchant
can enter content.

HasToField="1" The entry field for a recipient is shown and the merchant can enter a recipient.

23.2 Creating a PageType and Assigning it to a Template

ePages 5 - Design and Cartridge Development Guide Page 149

Adding E-Mail Events Implementing the Function

The presentation of individual e-mail messages is determined by individual HTML templates that are
connected to the MailType using PageTypes.

A base PageType exists for all mail PageTypes called SAopMail. The areas Page, Head, Body, and Content
are defined with the base templates here. Customized HTML templates Individual are assigned to each
area of the for individual MailTypes if necessary.

The PageTypes for MailTypes are defined in the file PageTypesMail.xml/in the directory /Database/XML of
your cartridge.

During PageType definition, the name must be used as the alias that is also used in the MailType as the
PageType ID. Compare Code example 87 and Code example 88.

<?xml version="1.0" encoding="UTF-8"7?>
<epages>
<Cartridge reference="1" Package="DE_EPAGES: :ContactForm">
<Class reference="1" Path="/Classes/Shop"'>
<PageType Alias="Mail-ShopContactForm" Base="'ShopMail" delete=""1">
<Template Name='"Body" FileName="Mail/Mail-ShopContactForm.Body.html" />
<Template Name='"'Content"
Template Name='"Content™ FileName=""Mail/Mail-
ShopContactForm.Content_html" />
</PageType>
</Class>
</Cartridge>
</epages>

Code example 88: PageType definition for a MailType

In the example, special HTML templates are assigned for the Bodyand Contentareas. The HTML files are
saved in the /Mail subdirectory of the template directory of your cartridge.

23.3Implementing the Function

The function that performs the sending of the mail is implemented in the /U/directory of your cartridge as a
PERL module.

It is important to pass the correct name for the MailType in the source code. Compare and. In addition, you
must make sure that the optional parameters that you have entered in the MailType definition are also
processed correctly in the code.

23.4 Registering an Action and Defining a Permission

Because sending the e-mail message is connected to an action, the action must be registered in the
databank. See also Registering Actions for Objects, on page 21. Use or create the Actions* xm/file of your
cartridge for this. The action is registered in the XML file as follows:

Page 150 ePages 5 - Design and Cartridge Development Guide

Registering an Action and Defining a Permission Adding E-Mail Events

<?xml version="1.0" encoding=""1s0-8859-1"?>
<epages>

<Class reference="1" Path="/Classes/Shop''>
<Object Alias="Actions'">
<Action Alias="ViewContactForm" Package="DE_EPAGES: :ContactForm: :Ul : :Shop"
FunctionName="ViewCached" delete="1" />
<Action Alias="SendContactMail" Package="DE_EPAGES: :ContactForm: :Ul : :Shop"
FunctionName="'SendContactMail" delete="1" />
</Object>
</Class>

</epages>

Code example 89: Registering an action
Note that the function name must be the same as in the PERL module FunctionName.

Determine who can perform the function in the Permissions*.xml/file. In our case, every customer:

<?xml version="1_.0" encoding="UTF-8"7?>
<epages>

<Role reference="1" Path="/Classes/Shop/Roles/Customer" >
<RoleAction Class="Shop"™ Action="ViewContactForm"™ delete="1" />
<RoleAction Class="Shop" Action="SendContactMail" delete="1" />
</Role>

</epages>

Code example 90: Assigning permission for the action

Here you use the alias for Action under which you registered the action.

ePages 5 - Design and Cartridge Development Guide Page 151

Define Table Extension of Cross-Selling Types

24. Extension of Cross-Selling Types

Use cross-selling types to create relations or links between products. In ePages, the following types
implemented: CrossSellingfor manual cross selling, Accessoryfor accessories, and ProductComparison for
product comparisons.

In the following, the normal process for creating additional cross-selling types is described in the example
of the type ReplacementPartfor replacement parts.

The unique features or important properties and files are explained. The basic concepts about creating and
managing content of cartridges that is described in the previous chapters is assumed.

A table must be created for each cross-selling type and the Product class must be extended with three
additional attributes.

The process is as follows:

- Define table

- Create classes

- Extend product attributes

- Creating Templates and PageTypes
- Register and implement functions

24.1 Define Table

You create a table with a reference to the name of the cross-selling type that you want to introduce. In our
example, it is called ReplacementPart. The three columns replacementpartid, productid and
targetproductid are defined for this table. The productidis the ID of the product that is assigned to the
replacement part. The fargetproductidis the ID of the product which is used as a replacement part.

The table is created using an SQL file in the cartridge directory /Database/Sybase/Tables. One possible
example of this is shown in Code example 91.

CREATE TABLE replacementpart (
replacementpartid int not null

, productid int not null

, targetproductid int not null

, constraint pk_replacementpart primary key (replacementpartid)

, constraint fk_replacementpart_product foreign key (targetproductid)
references product (productid)

, constraint fk_replacementpart_product_1 foreign key (productid)
references product (productid)

, constraint fk_replacementpart_object foreign key (replacementpartid)
references object (objectid)

)

GO

Code example 91: Creating a table for a new cross-selling type

At the same time, create a PERL module in the cartridge directory /AP//Objectin which the functions for
editing data sets in the table is implemented.

24.2 Create Classes

ePages 5 - Design and Cartridge Development Guide Page 153

http://pdomin.jena.epages.de/epages/Store.storefront/Diagnostics/?ViewAction=ViewObject&ObjectID=3853

Extension of Cross-Selling Types Extending Product Attributes

In addition, you must create a new class with the corresponding attributes. The new cross-selling type is
based upon Objectand is defined in the AttributesReplacementPart.xmlfile in the cartridge directory
/Database/XML. See Code example 92.

<?xml version="1.0" encoding="i1s0-8859-1"?7>
<epages>
<Object reference="1" Path="/Classes'>

<Class Alias=""ReplacementPart" Base="Object"

Package="Training: :ReplacementPart: :APl::0Object: :ReplacementPart"
ExportLevel="1" delete=""1">

<AttributeValue Name="Name' Language="en' Value="ReplacementPart" />

<Attributevalue Name="Description” Language="en"

Value="product replacement parts" />
<Object Alias="Attributes">
<Attribute Alias="Product" Type="Product'” IsMandatory="1" IsCacheable="1"
IsExportable="1" ExportLevel="2" IsObject="1"

Package="Training: :ReplacementPart: :API: :Attributes: :ReplacementPart"
Position="10" >
<Attributevalue Name="Name' Language="en' Value="Product" />
<AttributevValue Name="Description” Language="en"
Value="product " />
</Attribute>
<Attribute Alias="TargetProduct" Type="Product" IsMandatory=""1"
IsCacheable="1" IsExportable="1" ExportLevel="2" IsObject=""1"

Package="Training: :ReplacementPart: :API : :Attributes: :ReplacementPart"
Position="20" >
<AttributevValue Name="Name" Language="‘en" Value="TargetProduct” />
<AttributevValue Name="Description" Language="en"
Value="Replacement part product * />
</Attribute>
</Object>
</Class>

</Object>
</epages>

Code example 92: Class definitions for a new cross-selling type

Implement the functions for editing the attributes in a corresponding PERL module in the cartridge directory
JAPI/Attributes.

24.3 Extending Product Attributes

The Product class must be extended with three attributes for each cross-selling type:

Table 29: Additional Attributes
Name ‘Description ‘

<crosssellingtypename» Contains all products that as cross-selling products were directly
assigned to a master product or a product without variations

SubProduct¢crosssellingtypename> |Contains all products that as cross-selling products were directly
assigned to a product variation

Visible<crosssellingtypename» Contains all products that as cross-selling products were assigned
to a product and are visible in the shop. In the case of a product
variation, the visible cross-selling products of the master product
are shown followed by the directly-assigned cross-selling products.

For our example, the three attributes are called:

Page 154 ePages 5 - Design and Cartridge Development Guide

Creating Templates and PageTypes Extension of Cross-Selling Types

- ReplacementParts
- SubProductReplacementParts
- VisibleReplacementParts

These attributes are defined in the AttributesProduct.xmlfile in the cartridge directory /Database/XML:

<?xml version="1.0" encoding=""is0-8859-1"7>
<epages>
<Object reference="1" Path="/Classes'>

<Class reference="1" Alias="Product'>
<Object Alias="Attributes">
<Attribute Alias="ReplacementParts" Type="'ReplacementPart” IsArray=""1"
IsCacheable="0" IsExportable="0" 1sObject="1"
Package="Training: :ReplacementPart: :APIl: :Attributes: :Product"

>
<Attributevalue Name="Name' Language="‘en'" Value="ReplacementParts" />
</Attribute>
<Attribute Alias="SubProductReplacementParts" Type="ReplacementPart"
IsArray=""1" IsCacheable="0" IsExportable="0" IsObject=""1"
Package="Training: :ReplacementPart: :APIl: :Attributes: :Product"
>

<Attributevalue Name="Name' Language="‘en"
Value="VariationReplacementParts"
/>
</Attribute>
<Attribute Alias="VisibleReplacementParts" Type="ReplacementPart"
IsArray="1"
IsCacheable="0" IsExportable="0" I1sObject="1"
Package="Training: :ReplacementPart: :API: :Attributes: :Product”
>
<Attributevalue Name="Name'" Language="en' Value="Visible
ReplacementParts"
/>
</Object>
</Class>

</Object>
</epages>

Code example 93: Additional product attributes for a new cross-selling type

Implement the access functions for these attributes in a corresponding PERL module in the cartridge
directory /API/Attributes.

24.4 Creating Templates and PageTypes

You should generate new PageTypes with the corresponding templates for the display of new cross-selling
type both in the back office and in the storefront. Regarding the back office presentation, you must decide
whether the replacement parts are shown in their own tab or are shown and edited together with other
cross-selling types.

The advantage of using a dedicated tab exists in the independence of the functionality when transferring
the cartridge to other users.

If you show the replacement parts together with other cross-selling types, you must overwrite the original
template. This can create problems if you give someone the cartridge and the user has already overwritten
this template. This can create conflicts. Note this for your decision.

In our example we create our own tab. Since the individual tabs for product details are shown using the
menu, you must extend this menu. For more information on working with menus, see Dynamic Menus, on
page 167. A possible PageType definition is available in Code example 94.

ePages 5 - Design and Cartridge Development Guide Page 155

Extension of Cross-Selling Types Register and Implement Functions

<?xml version="1.0" encoding="UTF-8"7?>
<epages>
<I-- page types and templates -->
<Cartridge reference="1" Package="Training: :ReplacementPart">
<Class reference="1" Path="/Classes/Product">

<PageType reference="1" Alias="MBO-Product">

<Menu reference="1" Template="Tabs">
<Menu Template="Tab-ReplacementParts"™ URLAction="MBO-ViewReplacementParts"

Position="700" delete="1" />
</Menu>
<Template Name="Tab-ReplacementParts"
FileName="MBO/MBO-Product.Tab-ReplacementParts_html" />

</PageType>

<PageType Alias="MBO-ReplacementParts" Base="'"MBO-Product' delete="1">
<Template Name="TabPage"™ FileName=""MBO/MBO-ReplacementParts.TabPage.html*" />
<ViewAction URLAction="MBO-ViewReplacementParts" />
</PageType>

</Class>

</Cartridge>
</epages>

Code example 94: PageType for back office display of a new cross-selling type

In the example, the menu is extended that shows the individual tabs. The menu itself is defined in the
MBO-ProductPageType. It is referenced here. The order of the tabs is set by its own template.

The PageType MBO-ReplacementPartsis based upon MBO-Productand represents its own template for the
display of the content of the tab that is implemented in the assigned HTML file.

The corresponding ViewActions are defined here.
This is the same process for displaying replacement parts in the shop. Here, the detail data about a

product are also displayed using a menu. Therefore, you must only extend this menu. See Code example
95.

<?xml version="1.0" encoding="UTF-8"7?>
<epages>
<Cartridge reference="1" Package="Training::ReplacementPart">

<Class reference="1" Path="/Classes/Product'>

<PageType reference="1" Alias="'SF-Product'>

<Menu reference="1" Template="Content'>
<Menu Template="Content-ReplacementParts' Position="90" />
</Menu>
<Template Name='"Content-ReplacementParts"
FileName="SF/SF-Product.Content-ReplacementParts._html"
delete="1"/>
</PageType>

</Class>

</Cartridge>
</epages>

Code example 95: Extending the menu for showing the shop in a new cross-selling type

You determine how substitute parts are shown in the shop with the assigned HTML template.

24.5 Register and Implement Functions

Page 156 ePages 5 - Design and Cartridge Development Guide

Register and Implement Functions Extension of Cross-Selling Types

The actions that the merchant can perform regarding replacement parts must be registered in the database
and the functions that belong to this must be activated.

In the /Database/XML directory, create the Actions* xmlfile and register the actions as shown in Code
example 96.

<?xml version="1.0" encoding=""is0-8859-1"7>
<epages>
<Class reference="1" Path="/Classes/Product'>
<Object Alias="Actions'">

<Action Alias="RemoveReplacementPartProducts"
Package="Training: :ReplacementPart: :Ul: :Product" delete="1" />

</Object>
</Class>
</epages>

Code example 96: Registering the actions

The functions themselves are implemented in the PERL modules of the cartridge directory /UF

package Training::ReplacementPart::Ul::Product;
use base qw(DE_EPAGES: :Presentation::Ul::0Object);

sub RemoveReplacementPartProducts {
my $self = shift;
my $Servlet = shift;

my $Product = $Servlet->object;
$self->DeleteListedObjects($Serviet);
$Product->folder("ReplacementParts®)->renumberChildren;
return;

Verify whether the following data were provided or already processed or must be processed:

- Setting the dependencies of other cartridges: Dependencies.xm/!

- Assign the corresponding permissions: Permissions*.xm/

- Ifnecessary, provide hooks

- Usage of form handling

- Incase of localization: Usage of language tags and making language files available

- Note that the references to other objects, for example that these during deletion must possibly be
deleted as well.

ePages 5 - Design and Cartridge Development Guide Page 157

Creating Shops via Web Services and Scripts

25. Creating Shops via Web Services and Scripts

In addition to creating shops in the business administration, it is possible to create shops via Web service
or scripts. For more information about using Web services for ePages, see Web Services, on page 101.

This has the advantage that shops can be created via external systems or time-based.

To do so, use the Web service ShopConfigServicein the ShopConfiguration cartridge. When calling the
ePages Web service, there is a WebServices cartridge a client called Client.pm based on PERL. This class
has a customized error handling function. Use this client to call the Web service from an ePages
environment. You can use Service WebServiceClient.pm for calling from other systems. This is available in
the ePages PartnerWeb.

The methods of the ShopConfigService Web service are defined in the WSDL file with all the parameters
that belong to it.

The Web service ShopConfigService.pm can be found in

%EPAGES_CARTRIDGES%/DE_EPAGES/ShopConfiguration/AP1/WebService/ ,

the WSDL file which belongs to it (ShopConfigService.wsd) can be found in
%EPAGES_CARTRIDGES%/DE_EPAGES/ShopConfiguration/Data/Public/WSDL/
or, after installation in

%EPAGES_SHARED%/WebRoot/Site/WSDL/ .

The most important functions of this Web service are create, update, and delete. To create a shop, open
the create function with at least the following parameters:

Table 30: Parameters for create

Type ‘Comment ‘

Alias Unique shop name relating to the provider

ShopType This shop type must exist so that the shop can receive all properties and
features.

Database Database that the shop is created in must exist

ShopAlias Unique shop name relating to the database

ImportFiles Contains all files that are made available for the shop with information about
their properties and content.
The XML file is listed here which is used for defining the ShopType used.
The prerequisite for the import is that the application server can access the
import files.

This function matches the process of creating a shop in the business administration. During shop creation
in the user interface, however, the Alias = Shop alias is set and no additional import files can be entered.
Only the XML file which is determined via the ShopType is used.

The update function requires the same parameters as create. The name of the database cannot be
changed. This means that "moving" a shop from one database to another cannot be done this way. Use
other import files to import multi-language content into the shop, for example.

When executing the function delete, all shop data are deleted from the store database. The basic
information about the site database remain and are used for the shop history. Use the function
deleteShopRef to delete all shop data completely from the system.

ePages 5 - Design and Cartridge Development Guide Page 159

Creating Shops via Web Services and Scripts

Note that the service is running on the site. This means that the proxy must be called as follows:

http://<servername>/epages/Site.soap
Calling the ePages Web service is described in External Clients for ePages 15.3 Web Services, on page 104.

The functions described previously can be executed via scripts. You can find the corresponding scripts in

%EPAGES_CARTRIDGES%/DE_EPAGES/ShopConfiguration/Scripts/

Through executing the scripts, the corresponding function of ShopConfigService is executed. The following
is an example of creating a shop using a script:

perl createShop.pl -proxy http://localhost:80/epages/Site.soap

-wsuser /Providers/Distributor/Users/admin -passwd admin

-alias Store.TestShop -shoptype MerchantPro -storename Store -shopalias TestShop
%EPAGES_STORES%/Site/ShopImport/BusinessCard.xml

The parameters for the Web service must be passed explicitly for this. Scripts can only be started locally
but are useful for tests and for scheduled executions.

A special feature applies for the script deleteShop.pl. In this script, the functions delete and deleteShopRef
are executed sequentially in order to delete all shop data.

Page 160 ePages 5 - Design and Cartridge Development Guide

Patching Cartridges

26. Patching Cartridges

Patching is the fitting of data to a later version of a cartridge. As a prerequisite, before beginning the patch,
all files that must be replaced with new files in the cartridge and new files must be added.

Note: Before patching, create a backup of the current version.

The foundation for patching is a framework with supports patches in two steps:

1. Updating or changing the database structure
2. Updating data based upon the new database structure

To be able to execute these processes, the Cartridge.pm file must be extended according to Code example
97

;ub new {
my ($class, %options) = @ ;

my $self = _ PACKAGE__ ->SUPER: :new(
%options,
"CartridgeDirectory™ => "Training/PatchMe",
“Version* = "2.0", # current version number
"Patches” => ["1.0","1.1"], # list of version numbers that
can be

updated to current version
return bless $self, $class;
sub patchDBStructure_1 1 {
my $self = shift;

get the current database handle
my $dbi=GetCurrentDBHandle();

change the database structure

$dbi->do("ALTER TABLE xxx ADD yyy INTEGER DEFAULT O NOT NULL™);
update the data

$dbi->do("UPDATE xxx SET yyy = zzz + 21");
return "2.0%;

sub patch_1 0 {
my $self = shift;
use APl functions to migrate the data
return “1.1%;

sub patch_1 1 {
my $self = shift;

use APl functions to migrate the data

return “2.0%;

Code example 97: Modification of Cartridge.pm for patching

ePages 5 - Design and Cartridge Development Guide Page 161

Patching Cartridges

Two new parameters are entered into the newfunction, Versionand Patches. The Version parameter
presents the target version. This indicates which version the patch updates to. In the Patches parameter,
all versions are listed to which the target version can be updates. In the previous example this means that
this cartridge can be updated from version 1.0 and 1.1 to version 2.0.

The patchDBStructure_*function contains all methods to make all necessary changes in the database.

The following naming convention applies: The number of the source version to be updated is appended to
the function name patchDBStructure_ . Periods should be substituted with underscores. The number of the
target version is defined in the refurn command. According to the example, all database changes are
implemented in the patchDBStructure_1_1 function that are necessary to upgrade from version 1.1 to 2.0.

If database changes are required during an update from 1.0 to 1.1, these must be contained in the function
patchDBStructure_1_0 with thereturn command return '1.1°%.

Do not call any API functions until all database changes are complete.

The functions patch_*contain all methods for modifying or moving data according to the changed
database structure.

The naming convention applies here that the number of the source version is appended to the function
name, whereby periods are substituted by underscores. The refurncommand contains the number of the
target version.

The patch process is started after calling the script:

perl %EPAGES_CARTRIDGES%\DE_EPAGES\Installer\Scripts\patch.pl -storename Store
<vendor>: :<cartridgename>

After starting, all the functions pafchDBStructure_*are executed. After this, the functions pafch_* are
processed.

If errors occur during the process, the script can be restarted after fixing the errors. Functions that were
already executed correctly are not executed again. The process begins with the execution of functions that
previously had errors.

There is a table in the store database called Cartridge where all cartridges are listed which are installed.
Each cartridge has, among others, the dbstructureversion and version attributes. A new version number is
entered into dbstructureversion as soon as the patchDBStructure_*functions are executed successfully.
The new version number is entered into Versionas soon as the patch_*functions are successfully
executed. Through comparing both entries, you can check whether the patch was successful or not. This
comparison provides no information about the accuracy of the data after the patch.

You can patch from any version to the target version, however it is recommended to execute step-by-step
updates from one version to the next.

To summarize the process of patching cartridges up through testing the patch:

1. Create a backup on the current version and the current database and all other data and files that might
be influenced by the patch.

Increase the version number in the new() function in Cartridge.pm

Include the current version number in the list of versions that can be patched

Implement the patchDBStructure_*and patch_* functions as necessary

Start patch.pl

Update the cartridge list of the affected database in the technical administration

Clean the cartridge directories of files that are not used any longer among other things.

NowvEWwN

The process of patching cartridges on a live system:

Page 162 ePages 5 - Design and Cartridge Development Guide

Patching Cartridges

1. Create a backup on the current version and the current database and all other data and files that might
be influenced by the patch.

Copy all the new and changed cartridge files into the directory with the current version

Start patch.p!

Update the cartridge list of the affected database in the technical administration

Clean the cartridge directories of files that are not used any longer among other things.

U~ WN

ePages 5 - Design and Cartridge Development Guide Page 163

Make the Help Page Available Integrate your own online Help

27. Integrate your own online Help

The function used to show help is integrated in a template through one or more includes. On the display
page for products in the merchant back office you can see a Help call in the search area and a Help
function in the active tab.

You define which Help is shown together with the ViewAction to show the area for which the help is to be
shown.

To create a Help page for a page, do the following:

1. Create a HTML page with Help content and copy it into the necessary place in the file directory.
2. Linkthe Help page with the corresponding ViewAction
3. Implement the display code in the template

27.1 Make the Help Page Available

The files for the default online Help are found in the directory

%EPAGES_WEBROOT%/Doc/Help/<language>/<administration>

The Help pages for the German merchant administration pages, for example, can be found in

%EPAGES_WEBROOT%/Doc/Help/de/MBO

In addition to the directories for the administration page, you can create a separate directory for your help
pages and make these available. Language-dependent Help pages can be distributed among the various
directories for the individual languages.

If you create a cartridge for your function and its Help, the Help pages are copied to the correct places
during the installation process. See /nstalling - nmake, on page 85. The prerequisite for this is that you
provide the correct structure in your cartridge.

To do so, create a new subdirectory in your cartridge:
/Data/WebRoot/Doc/Help/<language>/<cartridgename>

Create the HTML files for your Help pages in this directory. We recommend placing the images in their own
subdirectory for organizational reasons.

For a German Help file for your cartridge, the HTML file in your cartridge directory must be placed as shown
here:

/Data/WebRoot/Doc/Help/de/MyCartridge/MyOwnHelp . html

Note: You can link from your Help page to an ePages standard Help page. Integrate the following link
into your page to do so, for example: Help</a.

27.2 Assigning a ViewAction

You must link the Help for a page to the action for displaying this page. You do this in the Actions*xm!lfile
of your cartridge.

The syntax is shown in the following example:

ePages 5 - Design and Cartridge Development Guide Page 165

Integrate your own online Help Display Code in Templates

<Action Alias="MBO-ViewMyCartridgeGeneral™
Package=""DE_EPAGES: :MyCartridge: :Ul : :Shop"
FunctionName="View" delete="1" >
<AttributeValue Name="HelpFileTopic'" Value="MyCartridge/MyOwnHelp_html* />
</Action>

Code example 98: Assigning Help to a ViewAction

27.3 Display Code in Templates
If you create new tabs in the MBO based upon the existing, the Help is automatically integrated.

To be able to see the Help pages in their own templates, an element for this must be integrated into the
template. A book icon is used as the standard element for this in the ePages system.

This icon is assigned to the following function:

<a href="#WebRoot/Doc/Help/{LanguagelD}/#HelpFileTopic"
onclick="openWindow(this.href,"","HelpWindow"); return false;">
<img id="HelpButton" class="HelpButton Clicklcon"
src="#StoreRoot/B0O/icons/dialog_ico_s_helpbook.gif"
alt="{ContextHelp}" title="{ContextHelp}"
onmouseover="this.src="#StoreRoot/BO/icons/dialog_ico_s_helpbook_open.gif""
onmouseout="this.src="#StoreRoot/B0O/icons/dialog_ico_s helpbook.gif™"
/>

Code example 99: Function for showing the correct Help page

Examples, such as those used in this code in the template can be found in the files Backoffice. Tabs.html,
(for usage on tabs) and MBO-ProductManager. Toolbar.htm/ (usage in the search area). These files are
located in your ePages installation.

Page 166 ePages 5 - Design and Cartridge Development Guide

Dynamic Menus

28. Dynamic Menus

Dynamic menus are used in places where various functionality should be shown flexibly. The advantages
of this method are the extendibility of the menu via cartridges, localization of individual menu entries or
inheritance of menus for of child PageTypes.

Typical menus are the main navigation bar, the context bar, the context menu, or the tabs to show object
details.

A menu is defined in a PageType. Menu entries are sorted within its definition of through other cartridges.
The content of a menu entry is described in a template. The assignments are created using menu and
template names.

Using the main navigation bar as an example, you can understand the usual process:

A menu with entries is defined in the PageType MB0O and a template for the menu display is assigned. See
Code example 100.

<PageType Alias="'MBO" Base="Backoffice" delete="1">
<Menu Template="Menu" Position="0" delete=""1">
<Menu Template="Menu-Marketing" Class=""Shop" URLAction=""MBO-
ViewMarketingGeneral™*
Position="60" />
<Menu Template="Menu-Settings" Class="Shop" URLAction="MBO-
ViewStatusGeneral™
Position="70" />
</Menu>

<Template Name="Menu" FileName="MBO/MBO.Menu.html" />

<Template Name="Menu-Marketing"” FileName="MBO/MBO.Menu-Marketing.html* />

<Template Name='"Menu-Settings" FileName="MBO/MBO.Menu-Settings.html" />
</PageType>

Code example 100: Menu definition from the Presentation cartridge
In the Menutag, the menu is created with a unique ID. Set individual menu entries within the menu tag.

For each entry, an ID and an action must be entered. You describe the action with a name and the object for
which the action is registered.

Use Position to determine the order in which the entries are shown.

For the complete menu as well as for each menu entry, you must use the template to describe content and
presentation. This assignment, as every area assignment in the PageType is performed in (7Template
Name=... />. The name of the area must match the ID of the menu or the menu item.

For our example, this means:

- Amenuis defined with the ID Menu

- The menu contains the entries Menu Marketing and Menu Settings with the action and the position
listed

- The menu entry Menu-Marketingis displayed via the MBO.Menu-Marketing. htmltemplate.

- The menu entry Menu-Settingsis displayed via the MBO.Menu-Settings.htmltemplate.

- The menu itself if displayed through the MBO.Menu.htmltemplate.

The name of a menu template must be unique within a PageType. Therefore, it is recommended to retain
naming conventions which consist of <menu_names-centry_name>.

ePages 5 - Design and Cartridge Development Guide Page 167

Dynamic Menus

The menu itself is often displayed in the template using a loop:

<table class="Menu" width="100%" cellspacing="0" cellpadding="0" summary=""">
<tr>
<td>
<p>

#BLOCK(**"MENU", "*Menu"")

#INCLUDE(#Template)
#ENDBLOCK

</p>
</td>

</tr>
</table>

Code example 101: Menu display

A template for the menu entry can be seen in Code example 102

<a href="?ViewAction=#URLAction&ObjectlD=#Shop.ID"
Onmouseover = 'changelmage(

“"manager_marketing®, "#StoreRoot/B0/icons/mbo_manager_img_marketing_mouseover.gif~
)ll

onmouseout= "changelmage(

"manager_marketing®, "#StoreRoot/B0/icons/mbo_manager_img_marketing_unselected.gif

)>
<img src="#StoreRoot/B0/icons/mbo_manager_img_marketing_unselected.gif" alt=
id=""manager_marketing" /> {Marketing}

Code example 102: HTML code for menu entry

The main navigation baris a typical example of a menu which was extended through other cartridges. For
example, the Customercartridge provides the Customer entry that is used to access the customer
manager.

The corresponding menu extension can be seen in Code example 103

<PageType reference="1" Alias="MBO'"'>
<Menu reference="1" Template="Menu'>
<Menu Template="Menu-Customers" Class="Shop'" URLAction=""MBO-SearchCustomers"
Position="20" delete="1" />
</Menu>
<Template Name="Menu-Customers"
FileName="MBO/MBO.Menu-Customers.html" delete="1" />
</PageType>

Code example 103: Menu extension

You must reference the PageType in which the menu was created. Then enter, using a reference, the ID of
the menu which you would like to extend.

You define the new entry like the entries during creation of a menu.

You use the ID to assign this entry to a template with presentation information.

Page 168 ePages 5 - Design and Cartridge Development Guide

Dynamic Menus

After installing the cartridge, the new entry is available in the menu.

Another example for extending menus is available in UE 7: New Batch Processing Commands in the MBO,
on page 195.

ePages 5 - Design and Cartridge Development Guide Page 169

Shopping basket template and Lineltems

29. Shopping basket template and Lineltems

The shopping basket template provides the basic Web page structure for each individual step from the
shopping basket view up to the display of the order confirmation. This complex template is structured
using menus in order to create optimal conditions for extending and customizing your shopping basket.

Figure 31 shows the basic structure of the shopping basket template defined in PageType SF-Basket.

PageType: SF-Basket

Menu: Content (Template: SF-Basket.Content)

Menu: Content-ProcessBar (Template: SF-Basket. Content-FrocessBar html)

Template: SF-Basket. Process-BasketForm. html

Template: SF-Basket. Process-BasketAddress. html

Template: SF-Basket. Process-BasketPaymentHirePurchase html

Template: SF-Basket Process-BasketOffer. html

Template: Content-BasketOverText (Template: SF-Basket. Content-BasketOverText. html)

Template: Content-Basket (no Template defined)

Template: Content-BasketBelowText (Template: SF-Basket. Content-BasketBelowText. html)

Figure 31: Basic shopping basket template structure

Note that SF-Basket defines the working area of the page. The surrounding page areas, such as the header
or left orright area, are displayed using the parent PageTypes.

There is no default template for the Content-Basket menu. The associated template for each step of the
order process is provided individually.

Each step is defined in its own PageType based on SF-Basket. The corresponding structural changes are
defined or specific templates are assigned in these PageTypes. In Code example 104, you see the
PageType SF-BasketOfferfor the step where the order overview is displayed:

ePages 5 - Design and Cartridge Development Guide Page 171

Shopping basket template and Lineltems Lineltems

<PageType Alias="SF-BasketOffer' Base="'SF-Basket™ delete="1">
<Template Name="Content-Basket" FileName=""SF/SF-BasketOffer.Content-
Basket._html' />
<ViewAction URLAction="ViewOffer" />
</PageType>

Code example 104: Template definition for the Content-Basket menu

In this example, the template, in which the order overview display is implemented, is assigned to the
Content-Basket menu.

This results in the following basic options for customizing the order process:

- Overwriting existing templates
- Adding new steps based on new PageTypes
- Extending the menu structure of the shopping basket template

When adding additional steps, note that you also need to apply these steps in the status display, that is,
you need to extend the Content-ProcessBarmenu.

One example of extending the menu structure is the Coupon cartridge. The area for entering coupon codes
should be displayed in the shopping basket. To add this area in the template, an entry is added to the
Contentmenu. In the Code example 105, you see the corresponding PageType definition:

<PageType Alias="SF-BasketForm" reference="1">
<Menu reference="1" Template="Content" >
<Menu Template=""Content-RedeemCoupon** Position="50" delete="1"/>
</Menu>
<Template Name="Content-RedeemCoupon*
FileName=""SF/SF-BasketForm.Content-RedeemCoupon.html* delete="1" />
<Template Name="ContentLineLineltemCoupon®
FileName="'SF/SF-BasketForm.ContentLineLineltemCoupon.html" delete="1"
/>
</PageType>

Code example 105: PageType with menu extension

Reference is made to the SF-Basketform PageType and the Content menu defined there. An additional
entry with the corresponding template assignment is created for the menu. This template describes the
layout of the additional page area and its functionality.

The shopping basket itself, with the list of products ordered, the selected shipping and payment methods,
as well as various price discounts, is displayed using Lineltems -

29.1 Lineltems

Lineltems are the individual items in a shopping basket table orin an order including the associated
documents. They contain information about the individual products, payment methods, percentage
discounts, and so on used to calculate the value of the shopping basket.

Lineltems are displayed not only in the shop but also in the back office, and generally in the following
locations:

Page 172 ePages 5 - Design and Cartridge Development Guide

Lineltems Shopping basket template and Lineltems

Table 31: Displaying Lineltems
Area Display

shop Shopping basket form

Order summary

Order confirmation (shop view and print view)

My account: Order (shop view and print view)

Minibasket (navigation element)

Back office Order - display and edit
Documents (invoice, packing slip, UPS packing slip, credit note) - display and
edit

E-mail Order confirmation

Status changes

Depending on the function and content, Lineltems must be displayed different. For this reason, each
Lineltem type has its own template.

The prerequisite for this is the definition of a corresponding Lineltem type. Using a "base" Lineltem in the
Lineltem class, a separate Lineltem type can be derived for each item type. For the most widely-used line

items, Lineltems have been defined that are structured hierarchically and inherit from each other. You can
display the overview of these default Lineltems using the Diagnostics cartridge:

- Theentireis list is displayed under A/l Classes.
- You can see the first level in the hierarchy and follow the individual branches of the structure under A/
Classes» Lineltem.

If no separate template has been defined for a Lineltem type, the template for the parent Lineltem type is
used. For more on using the templates of parent classes, see Object Method template, on page 45.

The following views for Lineltems are a result of the functional layouts:

Table 32: Lineltem views

View ‘Template type ‘Function

Lineltems ContentlLine Standard view for shopping baskets and orders

EditLineltems EditContentLine Standard view for orders with the edit function

MiniLineltems MiniContentLine Display in the navigation element for the
minibasket

SupplyLineltems SupplyContentLine Standard view for packing slips

EditSupplyLineltems [EditSupplyContentLine Standard view for packing slips with the edit
function

Neglineltems NegContentLine Standard view for credit notes (negative values)

NegEditLineltems NegEditContentLine Standard view for credit notes (negative values)
with the edit function

According to this principle, you can define your own Lineltem types or separate views at any time and
whenever necessary.

An example of an order display in the MBO in normal view including the edit function illustrates this
principle. The template type Contentlineis used for the simple display of shopping basket items in an
order in the MBO:

ePages 5 - Design and Cartridge Development Guide Page 173

Shopping basket template and Lineltems Lineltems

H#WITH(#LineltemContainer)

#LOOP(#Lineltems)
#INCLUDE("'ContentLine’™)
#ENDLOOP

#LOOP (#SalesDiscounts)
#INCLUDE(''ContentLine’™)

#ENDLOOP

#LOOP (#Discounts)
#INCLUDE(''ContentLine'™)

#ENDLOOP

H#WITH(#Shipping)
#INCLUDE("'ContentLine’™)

#ENDWITH

HWITH(#Payment)
#INCLUDE("'ContentLine'™)

#ENDWITH

#1F(#DEF INED(#PaymentDiscount))#WITH(#PaymentDiscount)
#INCLUDE("'ContentLine™)

#ENDWITHH#ENDIF

#LOOP (#Taxes)
© HENDLOOP

HENDWITH

Code example 106: Displaying Lineltems in the order view

The template specifically used for the individual Lineltem type is defined in the PageType assigned to
display the specific page.

For this, a search is made for the template definition, for example, ContentLine/<lineitemtyps]. To display
the delivery method, a search is made for the template ContentLinellneltemShippingand the associated
HTML file used for this display.

If no ContentlinellneltemShippingtemplate has been defined, the system looks for a template called
Contentlinellneltem according to the class structure. If this has also not been defined, the system resorts
to using the general template Contentline.

This illustrates how to use the structural guidelines for creating template names for defining and applying
specific templates per class. If the specific definition is missing, the more general template in the parent
class is processed.

For our example, if the order is displayed in edit mode, the template type £ditContentlineis used instead
of the template type Contentline:

Page 174 ePages 5 - Design and Cartridge Development Guide

Lineltems Shopping basket template and Lineltems

H#WITH(#LineltemContainer)

#LOOP(#Lineltems)
#INCLUDE("'EditContentLine™)
#ENDLOOP

#LOOP (#SalesDiscounts)
#INCLUDE("'EditContentLine™)

H#ENDLOOP

#LOOP (#Discounts)
#INCLUDE(""EditContentLine')

H#ENDLOOP

H#WITH(#Shipping)
#INCLUDE("'EditContentLine™)

HENDWITH

HWITH(#Payment)
#INCLUDE("'EditContentLine'™)

HENDWITH

#1F(#DEFINED(#PaymentDiscount))#WITH(#PaymentDiscount)
#INCLUDE("'Edi tContentLine™)

HENDWITHH#ENDIF

” #LOOP (#Taxes)
© HENDLOOP

HENDWITH

Code example 107: Displaying Lineltems in the edit view for orders

This provides the corresponding functions for editing the information. This time, to display the delivery
method when editing needs to be done, the £ditContentlinelineltemShippingtemplate along with the
assigned HTML file is used according to structural guidelines.

ePages 5 - Design and Cartridge Development Guide Page 175

UE 1: Integrating your own .css file

Appendix C: Usage Examples (UE)

30. UE 1: Integrating your own .css file

This example shows you how to include your own static stylesheet file (css) into the system. The files to do
so are in the attached cartridge examples, in the /E1_MyStaticStyle directory.

The stylesheet file is included using a header in the respective templates. Proceed as follows:

1

Create a cartridge.

Create a cartridge with the name MyStaticStyle. For the basics about creating a cartridge,
see(artridges, on page 81.

Create stylesheet file

Place the stylesheet file in the following cartridge directory:

/Data/Public/Shops/DemoShop/Styles/MyStyle.css

Then enter the following code:

-NewsList a {
color: red !important;

}

Code example 108: Code in Mystyle.css
Register link to stylesheet file
The reference to the additional stylesheet file must be included in the header of the Web site. The

header is defined using a PageType. You must extend this definition. To do so, create the
PageTypesSF.xmlfile in the

/Database/XML/

cartridge directory with the following content:

<?xml version="1.0" encoding="UTF-8"7?>
<epages>
<l-- page types and templates -->
<Cartridge reference="1" Package="Trailning::MyStaticStyle">
<Class reference="1" Path="/Classes/Shop''>
<PageType reference="1" Alias="SF'">
<Menu Template="Head" reference=""1">
<Menu Template=""Head-MyStyle' Position="5" delete="1" />
</Menu>
<Template Name="Head-MyStyle' FileName="SF/SF.Head-MyStyle._html""
delete="1" />
</PageType>
</Class>
</Cartridge>
</epages>

Code example 109: Code in the PageTypesSF.xml

The header will be extended with the section Head-MyStyle and the template S£.Head-MyStyle.htmlis
included. In this template, the code for the reference to the stylesheet file is found:

ePages 5 - Design and Cartridge Development Guide Page 177

UE 1: Integrating your own .css file Lineltems

<link href="#Shop.WebPath/Styles/MyStyle.css"
rel="stylesheet” type=""text/css" />

Code example 110: Reference to stylesheet file
The file SF.Head-MyStyle.htmlis created in the cartridge directory

/Templates/SF/

The basis for this can be found in PageType Concept, on page 39 and Dynamic Menus, on page 167.

4. Install the cartridge

Install the cartridge as described in chapter /nstalling - nmake, on page 85. You see the results on the
home page of your demo shop. The headings of the news articles in the news list are written in red.

Page 178 ePages 5 - Design and Cartridge Development Guide

UE 2: Extending the Storefront Style

31. UE 2: Extending the Storefront Style

In addition to static stylesheet extensions, you can create your own stylesheet entries so that they respond
to changes from the design tool. To do so, you must use TLE's in your stylesheet entries. The basis for this
can be found in 7emplates, on page 31 and TLE, on page 61 and Cartridges, on page 81.

The following example shows how to use your own style sheet entries so that these can be changed using
the Design Tool. The basis for this is the SF-Style. StyleExtension-PartnerStyles.css file that can be used for
this. The original file is located in the following directory:

%EPAGES_CARTRDIGES%/DE_EPAGES/Design/Templates/SF

You must overlay this file with your own cartridge. Proceed as follows:

1.

Create a cartridge

Create a cartridge with the name MyDynamicStyle. For more details see Creating a Cartridge Structure,
on page 83.

Create the overlay template

Create the following directory in the cartridge:

/Data/Private/Templates/DE_EPAGES/Design/Templates/SF

Place the file SF-Style.StyleExtension-PartnerStyles.css in this directory and enter the following code:

-NewsList a {
color: #ContentHotDealPriceColor[color] !important;
}

Code example 111: Content of SF-Style.StyleExtension-PartnerStyles.css
As with the previous example, the colour for the headings of the news articles in the news list of the

start page of the demoshop changed. In this case, the color is dependent upon the value of the
ContentHotDealPriceColorTLE. You can set this colour in the design tool.

Install the cartridge

Install the cartridge as described in /nstalling - nmake, on page 85.

Generate new style

Open the design tool for the current style in the MBO. Change the value for the file Home page under

Customise » Content area » Prices and save. A new Storefrontstyle.css file will then be generated.
The file is in the directory:

%EPAGES_WEBROOT/Stores/Shops/DemoShop/Styles/<currentStyle>

Open this file. In the bottom part is the section StyleExtension-PartnerStyles. In this section, you can
find stylesheet entries from Code example 111, with the current value that you set with the design tool.
You can see the effect on the home page. If you cannot see any changes, delete the cache.

ePages 5 - Design and Cartridge Development Guide Page 179

UE 3: Changes in the template

32. UE 3: Changes in the template

Content of this example is overlaying the home page of the demo shop and the use of TLE's in templates.
The basis for this can be found in 7emplates, on page 31 and TLE, on page 61 and Cartridges, on page 81.

You must first determine the template whose content you want to change and overlay it. Proceed as
follows:

1. Identify template
Decide which template shows the content area of the home page. Activate debugging. See Template
Debugging, on page 36. View the source code of the home page. You can see the cartridge path and
name of the template you need. In our case, SF-Shop.Content. himl.

2. Create a cartridge
Create a cartridge called MyHomePage. For more details see Creating a Cartridge Structure, on page 83.

3. Create the overlay template

Create the following directory in the cartridge:

/Data/Private/Templates/DE_EPAGES/Catalog/Templates/SF

Place the file SF-Shop.Content.htmlin this directory with the following code:

ePages 5 - Design and Cartridge Development Guide Page 181

UE 3: Changes in the template

4,

<I-- Section 1 Simple TLE -->
<hl>Hello World</h1>
#Shop.NameOrAlias

<div class="Separator'></div>

<I-- Section 2: LOOP main categories -->

#LOOP (#Shop .Categories.VisibleSubCategories)
#NameOrAlias
#ENDLOOP

<div class="Separator'></div>

<I-- Section 3. LOOP main categories / highlight "Tents" -->

#LOOP(#Shop .Categories.VisibleSubCategories)
<a href="?0bjectPath=#Path"
#IFGAlTas EQ "Tents") style="font-weight:bold"™ #ENDIF
>#NameOrAlias
H#ENDLOOP

<div class="Separator'></div>

<I-- Section 4. Change Object Context / LOOP main categories -->
#WITH(#Shop .Categories)

<h1>#NameOrAlias</h1>

#LOOP(#VisibleSubCategories)

#NameOrAlias

#ENDLOOP

#ENDWITH

<div class="Separator'></div>

<!-- Section 5. Variables and Calculation -->
#LOCAL('ValueA™,10)
#LOCAL('ValueB™,20)
#ValueA + #ValueB = #CALCULATE(#ValueA + #ValueB)

#SET(*'ValueB",25)
#ValueA + #ValueB = #CALCULATE(#ValueA + #ValueB)

#ENDLOCAL
#ENDLOCAL

Code example 112: Example content for SF-Style. StyleExtension-PartnerStyles.css

Section 1 shows the simple display of TLE variables.

Section 2 shows the usage of the LOOPTLE statement with the example of listing categories.
Section 3 shows the usage of an /Fstatementin a LOOP.

Section 4 shows the usage of a WITH statement. A specific object context is set by this. The following
TLE variables refer to this context.

Section 5 shows the usage of TLE variables with calculation and the usage of the LOCAL statement.
Explanations about the TLE variables and instructions can be found in 7L, on page 61.

Install the cartridge

Page 182 ePages 5 - Design and Cartridge Development Guide

UE 3: Changes in the template

Install the cartridge as shown in /nstalling - nmake, on page 85 describe and open the home page of
the demo shop.

ePages 5 - Design and Cartridge Development Guide Page 183

UE 4: Customizing the Back Office Design (Branding)

33. UE 4: Customizing the Back Office Design (Branding)

Users often require the back office design to be customized. We will demonstrate how to use style sheets
and overlaying to change the design. In this example, the changes to the MBO back office design should

be done using local overlaying. If you would like to encapsulate your design in its own cartridge to make

installable, refer to Cartridges, on page 81.

As mentioned previously, the corresponding style sheet file is located in the following directory:

%EPAGES_WEBROOT%/Store/B0/BackofficeStyle.css

The subdirectory /iconsis used for the associated images. The use of this style is defined in the following
HTML file:

%EPAGES_CARTRIDGES%/DE_EPAGES/Presentation/Templates/Backoffice.Style_html

In this file, you specify which styles will be used to display the merchant back office. See Code example
113 orthe original file in the directory indicated.

<link href="#StoreRoot/BO/BackofficeStyle.css" rel="stylesheet" type="text/css"
/>

Code example 113: Specifying the styles for the back office

If you want a new design, you can modify the BackofficeStyle.css file or integrate your changes in your own
.css file. We recommend creating a new file. Define a new cssfile, for example, called
NewBackofficeStyle.cssin the same directory. If you want to use your own icons, put them in the /icons
subdirectory for the BackofficeStyle.css file:

%EPAGES_WEBROOT%/Store/B0O/icons

Note: If you accidentally overwrite the .css file or the icons, you can always retrieve the original files
from the original cartridges. Do not overwrite the files in the original cartridge directories.

For the next step, you need to let the system know of your new file with the style changes. For this, you
need to customize the Backoffice.Style.html/file. But since the original files should not be modified, create
a file of the same name in the "overlay directory" and make your changes in this file:

Copy the Backoffice.Style.html file into the following directory:

%EPAGES_STORES%/Store/Templates/DE_EPAGES/Presentation/Templates

For information about overlaying, refer to Overlaying Templates, on page 35. Open this file and extend the
source code as in Code example 114.

<link href="#StoreRoot/BO/BackofficeStyle._css" rel="stylesheet" type="text/css"
/>

<link href="#StoreRoot/BO/NewBackofficeStyle.css" rel="stylesheet"
type=""text/css" />

Code example 114: Integrating the style changes

If you now call up the merchant back office, the modified design should be displayed. Compare Ffigure 32
and Ffigure 33 as an example.

ePages 5 - Design and Cartridge Development Guide Page 185

UE 4: Customizing the Back Office Design (Branding)

@h Milestones

7 Homne page
£ shop-Administrator
= Sign out

¢y Optirisation (inactive)

B Context menu

Setup assistant

B Tray

The tray is empty.

¥ Favorites

!
.

+ Googlecheckout - Se..,
¥ Leatherrnan Toal Sur...

+ Campingaz Twister 2.,

ApER S

» Remove all favorites

!

& History
» Administration home...
+ Shop-adrministeatar ...

o BB

+ Clear history

Welcome to your shop administration page @&

The latest product news, market trends and tips for your success in e-commeres -

newslattar now!

epages @

A .

+ subscribe to the ePages custarner

Orders
Manage customer orders, Create documents such as
invoices and packing zlips,

Products

Prepare your products for presentation with texts and
images. Organise your inventory,

% Product types Price lists Search statistics

Design
Design your shop using various templates, Refine
your design by using images, colours, and navigation
elemants.

 Styla

Settings
Configure the systemn and the arder process to fit

&

your shap.
2 Tax caleulation = Country settings
= Delivery and papment = E-mail settings

-

Setup assistant
Get help creating your shop. In just a few steps your

y
F

\\J

shop will be designed and ready to go.

Customers

The custemer database cantains all addresses and
access data, Search by criteria such as custorner
groups ar purchase valumes,

Categories
Grganise your products inta categaries, Supplement
your site with your own content such as news and
upcoming euants,

4 Prometional products Herme page

@ Caontact inforrmation + Terms and Conditions

Marketing
Announce your offers in the Internet. Win and keep

custorners.
% Mewsletter = Coupans = Product portals
 etracker “eBay itemns Trusted Shops

Help
rou will always receive relevant help while you work,
Find out haw to receive this help.

“ First steps @ '+ Gverview of the online help @

Figure 32: The original default back office design

) Milestones
Home page

ﬂ Shop-Administrator

&= Sign out

Optimisation (inactive) Optimisstion
(insctive)

Context menu

Setup azsistant

Tray
The tray is empty,
Favorites (2]
GooglaCheckOut - Se... =
" Lestherman Tool Sur.. },Q
" Campingaz Twister 2 },ﬁ
Remove all favorites L

History

Welcome to your shop administration page &

The latest product news, market trends and tips for your success in e-commerce -

o | ¢ 3)
Orders Customers Products Categories Design Marketing Settings

Help

epages

S N

subscribe to the ePages customer newsletter now!

Optimisation settings
More about this topic

Orders
Manage customer orders, Create documents such as invoices
and packing stips.

Products
Prepare your products for presentation with texts and images.
Organise your inventory.

Procuct types Price lists Search statistics

Design
Design your shop using warious templates, Refine your design
by using images, colours, and navigation elements,

Style

Settings
Configure the system and the order process to fit your shop,
Tax calculation Country settings Delivery and payment

E-mail settings

Setup assistant
Get help creating your shop, In just a few steps wour shop will
be designed and ready to go.

Customers

The customer database contains all addresses and access data,
Search by criteria such as customer groups or purchase
WOlUMES,

Categories

Organise your products into categaries. Supplement your site

with your own content such as news and upcoming events,
Promotional products Home page Contact information

Terms and Conclitions

Marketing

Announce your offers in the Internet. Win and keep customers.
Mewvsletter Coupons Product portals etracker
eBay tems Trusted Shops

Help

ou will ahways receive relewant help while wou work, Find out
how to receive this help,

First stepsThe page opens in & new window

Overvieve of the online helpThe page opens in & new window

Figure 33: The back office after the design change described

The 7inyMCEWYSIWYG editor is a platform-independent Web-based HTML application that is integrated
into the ePages system. The design definitions are distributed among various HTMLS, js, and CSS files. To
make design changes here, you must look for find and change the files in the
%EPAGES_WEBROOT%/Store/tinymce directory. These changes can be overwritten by upgrades.

Page 186

ePages 5 - Design and Cartridge Development Guide

UE 5: Deactivating the Design Tool

34. UE 5: Deactivating the Design Tool

The goal is to modify the merchant administration in such a way that the merchants have no access to the
Design Tool and Setup Assistant, thereby preventing them from changing the design of their online shops.
One way to do this is by overlaying certain templates. Basic information about this can be found in
Templates, on page 31 and TLE, on page 61 and Cartridges, on page 81.

The Design Tool and the Setup Assistant are called using links in the templates. These links need to be
identified and deleted from the template.

The merchant can access the design tools via the following links:

Links in the context menu to the Setup Assistant

Links to the Setup Assistant and the Designin the overview of functions on the home page
Link to the Designin the main navigation bar

Links to the Designin the Related Topics section on various pages

To deactivate the design tool, do the following:
1. Identify template

You need to determine which template will display which information on the Web page. To do this,
activate the debugging information in the source code, see Template Debugging, on page 36.
For our example, the following applies:

- Thelink to the Setup Assistant is the only entry in the context menu. Therefore, the entire context
box should not be displayed. Look for the template that displays the boxes in the left navigation
bar.

- You need to remove the Designitem from the main navigation bar. Look for the template that
displays the main navigation bar.

- The function overview on the home page contains links to the Setup Assistant and to Design. These
links must be deleted.

- Ifin Related Topics, the only entry is the link to the navigation bar, the entire entry may not be
displayed. Otherwise, the item with the link needs to be deleted. Look for the template that
displays the Related Topics.

Open the merchant administration page and display the functions in the browser. In the Web page
source code, get the name of the template including the cartridge information from the INCLUDE. The
corresponding action is also displayed. You can use this information to look for all the templates in
which this action will be executed. This is how you determine which templates you need to edit.

2. Create a cartridge
Create a cartridge called HideDesign. For more details see Creating a Cartridge Structure, on page 83.

3. Create the overlay template

Copy these templates from the original installation directories into the corresponding working
directories for the cartridge. For example, copy the file Backoffice.ContextBar.htm!from

%EPAFES_CARTRIDGES%/Cartridges/DE_EPAGES/Presentation/Templates/

into the cartridge directory:

/Data/Private/Templates/DE_EPAGES/Presentation/Templates/

Edit the copied templates so that the functions mentioned above are no longer visible.

ePages 5 - Design and Cartridge Development Guide Page 187

UE 5: Deactivating the Design Tool

In the original Backoffice.ContextBar.htmlfile, all the necessary boxes for the left navigation bar for the
merchant administration page are displayed, see Code example 115.

#BLOCK(**MENU", "*ContextBar™)
#INCLUDE(#Template)
#ENDBLOCK

Code example 115: Template for displaying the boxes in the left navigation bar for the MBO

You now need to change the code so that the context box with the link to the Setup Assistant is not
displayed, see Code example 116.

#BLOCK(**MENU", "*ContextBar')
#IF(NOT (
(
(#VIEWACTION.Alias EQ "MBO-ViewUserSettings')
OR
(#VIEWACTION.Alias EQ "MBO-ViewMBO')
)
AND
(#Template.Name EQ "ContextMenuBox')
)
)
#INCLUDE(#Template)
#ENDIF
#ENDBLOCK

Code example 116: Hiding the context box
4. Install the cartridge

Install the cartridge as described in /nstalling - nmake, on page 85. Delete the cache, remove the
respective ctmpl files and restart the ePages service.

The files for this example can be found in the £5_HideDesign directory included in the example cartridges.
The templates to hide the context box and design main menu point Design are contained in the cartridge.
You must identify the templates to hide the respective Related Topic yourself, copy them to the cartridge,
and change them. Comment out the corresponding links.

Page 188 ePages 5 - Design and Cartridge Development Guide

UE 6: Design Changes using PageTypes

35. UE 6: Design Changes using PageTypes

The focus of this example is how to work with PageTypes. We will restrict ourselves to design changes right
now in order to keep this cartridge example from becoming too complex. The basis for this can be found in
Templates, on page 31 and PageType Concept, on page 39and Cartridges, on page 81.

Changing existing or creating new PageTypes must always be done in separate cartridges.

In this example, the display of content pages (articles) will be changed. The starting point is the article
display in the demo shop. See Figure 34

Milestones

We're equipped to achieve your Gos!

Home page @ Imprint ® Contact # T&C % Customerinformation @ Privacy Policy %]

Categories Categories » Fresh wind in the online shop Shopping basket
O Jackets . . . Your shopping basket is empty.
O Shoes Fresh wind in the online shop
O Backpacks Milestones offers a fresh desian, an expanded assortment, and more service for your purchases, Crder farm
Tents Your requirements for our shop have. gravwn--and We.ha\uﬁe grow.n, too. With the Signin
Equipmert nevy ePages shop system, our shop is novw & shop with kick. Redister and plan your
A P~ next vacation with us. Manage your own shopping lists and follow your order Uszer name
status.
Product search
Our service for you: Qur neswsletter provides customers with important ideas and Pazswvord
newvs about traveling and adventure,
+ Advanced search All great specials in one great place: Every week, we introduce new and affordable products. You
can zee them on our home page and alzo here. +Forgot your password?
Promotional ltems Have fun exploring and shopping. + Register
Black Bear Gemini our hilestones Team Subscribe to nevwsletter
£20.95*) N i
ﬂ:«“‘*:&s 2 Prirt our Specisls Currency selection
A
: ® 2, printview | S(Eur0)
£33
£ (Pound Sterling)

tieindl Air Rewvolution 2.0
£163.95*

Mag Lite Wini

£16.95*

* Prices incl. WAT, plus Shipping

Do you have any guestions?

Call our toll-free number st 0 800 /
123 456.

We are happy to help.

Copyright ® 2005 ePages Software GmbH

Figure 34: The home page as starting point for the example

The template for article display should be changed so that the content is included using two INCLUDES.
One INCLUDE provides all data that are relevant for the text. The other connects the functions to print and
display the attachment. To make the result more vivid, the functions should be placed above the article
contents and the image beneath the text.

1. Identify template and PageType

Determine which template will be used to display articles and in which PageType the assignment will
occur. Using the debugging information, you will see that the content area is displayed via the
following template

%EPAGES_CARTRIDGES%/DE_EPAGES/Content/Templates/SF/SF-Article.Content_html

Now, you must find out in which PageType this template is assigned. Template and PageType, in which
the template is assigned are usually in a cartridge. The PageTypes for the Content cartridge are in the

ePages 5 - Design and Cartridge Development Guide Page 189

UE 6: Design Changes using PageTypes

/Database/XML/ directory in the PageTypesSF.xmlfile. You can see the original page in Code example
117.

<?xml version="1.0" encoding="UTF-8"7?>
<epages>
<I-- page types and templates -->
<Cartridge reference="1" Package="DE_EPAGES: :Content">

<Class reference="1" Path="/Classes/Article">
<PageType Alias="SF-Article”™ Base="SF" delete=""1">
<Template Name="Content' FileName=""SF/SF-Article.Content_html" />
<ViewAction URLAction="View" />
</PageType>
<PageType Alias="SF-ArticlePrint"” Base="SF-Article” delete="1">
<Menu Template="Head" Base="‘Head' Position="0"">
<Menu Template="Head-PrintContentStyle" Position="40" />
</Menu>
<ViewAction URLAction="ViewPrint" />
</PageType>
</Class>

Code example 117: Content definition in the SFPageType

The PageType SF-Articleis based on the SFPageType and overwrites the Contentarea of the template

listed there.

After the template and PageType are known, the following tasks should be performed:

- Change the template SF-Article.Content. html, so that the content is included using INCLUDES and
provided to the overlay template

- Provide the INCLUDE template

- Extend the PageType

2. Create a cartridge

Create a cartridge called MyArticleDesign. For more details see Creating a Cartridge Structure, on page
83.

3. Create the overlay template

Create the following directory in the cartridge:

/Data/Private/Templates/DE_EPAGES/Content/Templates/SF

Create the SF-Article. Content. htmlfile in this directory with the following content :

Page 190 ePages 5 - Design and Cartridge Development Guide

UE 6: Design Changes using PageTypes

#INCLUDE("'Content-PrintButton™™)
<h3>
#LOCAL('LastObjectID" ,#I1D)
#LOOP (#PathFromSite)
#IF(#ID NNE #LastObjectlID)
<a class="Breadcrumbltem"
href="?0bjectPath=#Path[url]">#NameOrAlias
H#ENDIF
#ENDLOOP
#ENDLOCAL
#NameOrAlias
</h3>
<div class="Article">

<div class="Separator'></div>
#INCLUDE("Article_AttachmentSection™)
<div class="Separator'></div>
#INCLUDE(*"Article_Content™)

</div>

Code example 118: Change in the Contentdescription in the template
Insert the source code for both includes in two new files:

- SF-Article. Article_Content.htm/and
- SFArticle.Article_AttachmentSection. html.

Since you are not overlaying original templates but rather introducing new templates, these new
templates are created in the directory for cartridge-specific templates:

/Templates/SF

Use as the source code for the INCLUDE templates from the original template. Change the source code
in SF-Article.Article_Content.htm/so that the image is shown beneath the text.

4. Extending the PageType

Through adding includes, the PageType SF-Article must also be changed. Both includes must be added
as new areas in the PageType and the corresponding templates must be assigned.

These changes should not be made in the PageType definition in the Content cartridge. In the
/Database/XML directory of the MyDesign cartridge, create the PageTypes.xmlfile, see Code example
119.

<?xml version="1.0" encoding="UTF-8"7?>
<epages>
<I-- page types and templates -->
<Cartridge reference="1" Package="Training::MyArticleDesign">
<Class reference="1" Path="/Classes/Article">
<Template Name="Article_Content"
FileName=""SF/SF-Article._Article Content.html™ delete="1"/>
<Template Name="Article_AttachmentSection"
FileName=""SF/SF-Article._Article AttachmentSection.html" delete="1"/>
</PageType>
</Class>
</Cartridge>
</epages>

Code example 119: PageType definition for the MyArticleDesign cartridge

ePages 5 - Design and Cartridge Development Guide Page 191

UE 6: Design Changes using PageTypes

6.

Using Cartridge reference..., indicate which cartridge the PageType definition belongs to.

In the Classtag and using reference..., create the reference to the object that the PageType is assigned
to. You can find this in the original definition of the PageType.

The statement reference="1" determines that with the following commands, an existing PageType is
extended. The PageType to be extended is indicated in the A//as.

The new areas Article_Contentand Article_AttachmentSection are defined and assigned to the
corresponding templates in the PageType element.

The correspondence between the area definition in the PageType and the usage in the template is
illustrated here. The names of the areas are used as parameters of the INCLUDES.

Define dependencies

The basic files have now been created. In order for the cartridge to function, one more file still needs to
be created. The function of this file is explained in greater detail in /mport Files, on page 113, . Look at
this later so that you are not distracted from the task of creating a cartridge right now. Create the file in
the corresponding location or copy it from the example source code. This file will be created in the
same directory as Pagelypes.xmt:

Dependencies.xml

This file determines which functions the cartridge can or should use from any other specific cartridge.

<?xml version="1.0" encoding="UTF-8"7?>
<epages>

<Dependency Package="'DE_EPAGES: :Design' />
</epages>

Code example 120: Setting the dependencies on other cartridges
Install the cartridge

Install the cartridge as described in /nstalling - nmake, on page 85.

After the process has completed, the articles can be seen in the shop. The template changes should be
viewable in the display.

Page 192 ePages 5 - Design and Cartridge Development Guide

UE 6: Design Changes using PageTypes

Milestones
' equipped to

#» Home page > Imprint 3 Contact ® T&C 3 Customerinformation 3 Privacy Policy Bl T

Categories Categories * Fresh wind in the online shop Shopping basket
Jacket A hopping basket i .
g Sahc;ess f) Prirt our Specials P S (BEEhEh B Gy
O Backpacks S Print view COroer form
Tents . . . Signin
e Fresh wind in the online shop
Uszer name

Milestones offers a fresh design, an expanded assortment, and more service for your purchases.
Product search Your reguirements for our shop have grown--and we have groven, too. With the new ePages shop
system, our shop is now a shop with kick. Register and plan your next vacation with us. Manage your Pazzword

l:l &, own shopping lists and followe your order status.

Our service for you: Qur nevvsletter provides customers with important ideas and newws about traveling
and adverture. +Forgot your passwaord?
Promotional kems All great specials in one great place: Every week, we introduce nevy and affordable products. You + Register

can see them on our home page and also here,

+ Advanced search

Black Bear Gemini ubeorbe it
£29.95 Have fun exploring and shopping. uhbzcribe to new sletter
; Your Milestones Team Currency selection

£(Euro)
£ (Pound Sterling

/ Vo
heindl Air Rewvaolution 2.0
£169.95*

=g Lite hini

£16.95

* Prices incl. “WAT, plus Shipping

Do you have any gquestions?

Call our tall-free number &t 0 800 /
123 456.

‘We are happy to help.

Copyright @ 2006 eFages Software GmbH

Figure 35: changed article view

Note: If the view is not visible immediately, delete the respective ctmpl files in the /STAT7/C directory.

ePages 5 - Design and Cartridge Development Guide Page 193

UE 7: New Batch Processing Commands in the MBO

36. UE 7: New Batch Processing Commands in the MBO

Building on all the knowledge you have collected so far, you will now use a cartridge to extend the existing
functions of the application in the merchant back office. The basis for this can be found in 7emplates, on
page 31 and PageType Concept, on page 39and Cartridges, on page 81.

In the MBO, there are many batch processing actions for tables that you can to process more than one
entry at one time. See Ffigure 36.

T Products Catsgories | 1 Design | @y Marksting | 3, Ssttings | &) Help

@ Milest Product number Text search Languags Display per pags L
‘ : o e, e
£ shop-administratar

Products
&= Sign out
) Optimisation (inactive) General @&
Product number List price AT stock level A7
Y [J| @ be_s0401 5 Berghaus Paclite Jacket - Men £199,95
i products
B Naw | @ be_a0402 5 Berghaus Paclite Jacket - Women £199,95
-~ Product types | @ <co_v1eos04001 Carmpingaz Twister 270 £22,95 11
i Price lists
| el SRS] @ ca_s1etoe4270 Campingaz CV270 Valve Gas Canister £3,95 3
- Product settings]| @ co_s1e1104470 Campingaz CV470 Valve Gas Canister £7.95 5
i~Impott and export O @ de_3201212002 Deuter Hydro 2,0 £74.95 25
i BMEcat import
| @ de_3203104010 Deuter Kangaroo £99,95 10
| @ de_3206199010 Deuter Teddy Bear £26,95 11
Tz e s @mE D @ eg_1000111010 Eureka El Capitan IV £339.95 1z
D e er_7142303001 Edelrid Black Bear Rope £1.45 500
% Favorites @ 7]

K ¢ [1122 5

Start action]

Mumber: 22

& History

+ Products - General

ten
Add to tray

¢ Leatherrmnan Toaol Sur..
Set visible

w B O

Set not visible
Duplicate

Assign to category...
Assign product portals...
Delete

v Clear history

Delete all products

Figure 36: Batch processing commands for products

In this example, we want to add an action to the batch process for products. The action should mark the
highlighted products in the product table as New Products. They will be given special emphasis in the
shop. The new action is called Set7oNew.

1. Identify PageType

Determine which template will be used to display the batch processing actions and in which PageType
the assignment will occur. This is the MBO-Products PageType. Add a new action to this page type.

2. Create a cartridge

Create a cartridge called AddBatchAction. For more details see Creating a Cartridge Structure, on page
83.

3. Extending the PageType

To add a new action, you must extend the MBO-Products PageType. In the

/Database/XML

directory, place the PageT7ypesMBO.xmlfile with the following source code:

ePages 5 - Design and Cartridge Development Guide Page 195

UE 7: New Batch Processing Commands in the MBO

<?xml version="1.0" encoding="UTF-8"7?>
<epages>
<I-- page types and templates -->
<Cartridge reference="1" Package="Training: :AddBatchAction">
<Class reference="1" Path="/Classes/ProductFolder">
<PageType Alias="MBO-Products" reference="1">
<Menu Template="BatchActions™ >
<Menu Template="BatchAction-SetToNew" URLAction="'SetToNew"
Position="90" delete="1"/>
</Menu>
<Template Name='"BatchAction-SetToNew"
FileName="MBO/MBO-Products.BatchAction-SetToNew.html" delete="1"/>
</PageType>
</Class>
</Cartridge>
</epages>

Code example 121: Extending an existing PageType

Using reference="1"in the Pagelypetag, indicate that you would like to extend the MBO-Products
PageType. Here you find the Menutag with the name BatchActions, in which different batch processes
are already defined.

Now create a Menutag with the same name, BatchActions. In this action, specify the new batch
process BatchAction-SetToNewwith the URLAction Set7oNew. The Position attribute determines where
the new action should be in the list of all batch process actions. At runtime, this menu entry is then
processed and displayed together with the default entries, as the result in Figure 37shows.

4. Create atemplate

In the PageType definition, you also assigned the new batch process to a template. This template is
called MBO-Products.BatchAction-SetToNew.HTML and you put it in the /Templates/MBO directory of
your cartridge. This template describes how the batch process should be displayed on the page. In our
example, only an additional entry is created for the drop-down menu for the batch process. The source
code for the template appears as follows:

<option value="#URLAction">{SetNew}</option>

Code example 122: Template for a new batch process action
5. Create Dictionary files

In the template source code, you have inserted a language tag for the name of the batch processing
action called {SetNew} This keeps your language options flexible, see Multiple Languages—Language
Tags, on page 489.

Now for every language you want to display, you need to create the corresponding language file, in
which the placeholder is replaced with an actual identifier in the respective language.

For our example, we would like to display two languages, German and English. Create the two files
Dictionary.de.xmland Dictionary.en.xml. For the basics about working with language files, see Multiple
Languages—Language Tags, on page 49.

Create the Dictionary.de.xmland Dictionary.en.xmlfiles in the /Templates directory of your cartridge
and insert the following code:

<?xml version="1.0" encoding="1s0-8859-1"?>
<epages>
<Language Language="'de'>
<Translation Keyword="SetNew" Value="Als neues Produkt anzeigen>
</Language>
</epages>

Code example 123: German content for the SefNewlanguage tag

Page 196 ePages 5 - Design and Cartridge Development Guide

UE 7: New Batch Processing Commands in the MBO

or

<?xml version="1_.0" encoding="1s0-8859-1"?7>
<epages>
<Language Language=''en"'>
<Translation Keyword="SetNew" Value="Display as new product>
</Language>
</epages>

Code example 124: English content for the SefNewlanguage tag

Depending on the display language selected, the batch processing action is displayed accordingly in
the merchant back office.

6. Providing functions

In order to identify a product as a New Product, a product attribute needs to be changed. In order to
implement the function, a PERL module must be written and made available in the cartridge.
Create the file containing the PERL code in the /U/directory. In our example, this is the
Productfolder.pm file with the following source code:

package Training: :AddBatchAction::Ul::ProductFolder;
use base qw(DE_EPAGES: :Presentation::Ul::Object);

use strict;
use DE_EPAGES::Object::APIl::Factory gw (LoadObject);

sub SetToNew {
my $self = shift;
my $Servlet = shift;

my $MasterObject = $Servlet->object;

my $Form = $Servlet->form;

my $hvalues = $Form->form($MasterObject, "ListedObjects™);

my @ListObjects = map { LoadObject($_->{"ListObjectID"}) }
@{$hvalues->{"ListObjectIDs"}};

$ ->set({ "IsNew™ => 1 }) foreach @ListObjects;

return;

}

1;

Code example 125: Code example for setting /sNew product attribute
In the function, the product attribute /sNewis set to 1 for all the selected products.
7. Determine Dependencies

You must again decide which functions from which cartridge to use and whether it is even possible. In
the previous example, the functions from Design were inherited. Certain more specific requirements
are now necessary. You would like to work with your products, as well as have access to or be able to
extend product-relevant functions. Now derive your cartridge from the Products cartridge. Define this
dependency in the Dependencies.xmlfile in the /Database/XML directory. You will find the necessary
source code in Code example 126.

<?xml version="1.0" encoding="UTF-8"7?>
<epages>

<Dependency Package=""DE_EPAGES: :Product" />
</epages>

Code example 126: Setting the dependency of another cartridge

ePages 5 - Design and Cartridge Development Guide Page 197

UE 7: New Batch Processing Commands in the MBO

8.

10.

Register the action

You have also defined a new action via the PageType. This action must also have been previously
created in the database and made known. In addition, create the ActionsProduct.xmlfile in the
/Database/XML directory with the following content:

<?xml version="1.0" encoding="UTF-8"7?>
<epages>
<Class reference="1" Path="/Classes/ProductFolder">
<Object Alias="Actions'">
<Action Alias=""SetToNew"
Package="Training: :AddBatchAction: :Ul: :ProductFolder"™ delete="1" />
</Object>
</Class>
</epages>

Code example 127: Registering the new action in the database
Assigning permissions
For this action, you need to set who will have permission to execute it. Since the action is only

available in the merchant back office, you need to assign permissions in the Permissions.xmlfile as
follows:

<?xml version="1_.0" encoding="UTF-8"7?>
<epages>
<Role reference="1" Path="/Classes/Shop/Roles/Merchant'>
<RoleAction Class="ProductFolder'™ Action="SetToNew" delete="1" />
</Role>
</epages>

Code example 128: Registering the permissions in the database
Install the cartridge
Install the cartridge as described in /nstalling - nmake, on page 85. After the process has ended, open

the merchant back office and then the product page. On the page with the product list, click the drop-
down menu for the batch processing actions. You will see the new action listed there, see Figure 3/.

Page 198 ePages 5 - Design and Cartridge Development Guide

UE 7: New Batch Processing Commands in the MBO

Text search

Languags Cisplay per page

e

| [english %| [10Resuls +

FHome page

£ shop-administrator
@ Sign out

Products

General

) Optimisation (inactive)

Product number

List price

T Products

S — | @ be_anao1 @ Berghaus Paclite Jacket - Men £199.55
roduc
E-New [J| @ be_anaoz @ Berghaus Paclite Jacket - Women £199.95
Product types B @ c9_0100504001 Carnpingaz Twistar 270 £22,95 11
Price lists
. [J| @@ <cg_v101004a270 Campingaz CV270 Valve Gas Canistar £3.95 3
Produck setkings [J| @ <g_0101104470 Campingaz CV470 Walve Gas Canister £7.95 5
;EE"‘": - El:pc‘“ 0| @ de_s201212002 Deuter Hydro 2.0 £74,95 25
cat impo
| @ de_3202104010 Deuter Kangaroo £99.95 10
[]| @ de_szo6108010 Deuter Teddy bear £26.95 1
N [J| @ ea_teoe111010 Eureks El Capitan Iv £339,95 12
| @ er_7142303001 Edelrid Black Bear Rope £1.45 500
Y —
1

2

»

i (Selact antry)

—

Exercute

+ Products - General (Salect antry)
Add to tray
Set visible
Set not visible

Cuplicate

» Leatherman Toal Sur..

W BB

» Clear history

Assign to category..
Assign product portals,

Figure 37: New batch process added

Since you have also created a language file for English, you will also see a correct entry for the new
batch process action in the English display:

Praduktnumrmer Textsuche Sprache Anzeige pro Seite
4 startseite | | |oeutsctv| |10 erasbnisse v @e
iic:‘:;;ir:inistratm R
) Optimierung (inaktiv) Allgemei

Produktnummer

Produkte

Listenprei

Meu

Produkttypan
Freislisten

Suchstatistik

Produkteinstellungen

Irmport und Expart

BMEcat-Irnpart

Ablage

Die Ablage ist lzer,

¥ Favoriten

I

3l

D G be_d0401 Berghaus Paclite Jacket - Men £199,95
D @ be_d0402 Berghaus Paclite Jacket - Woman £199,95
| @ ca_0100504001 Carnpingaz Twister 270 £22,95 11
1| (@ ca_0101004270 Carnpingaz CV270 Ventilgaskartusche £3,95 2
D @ cg_0101104470 Campingaz V470 Ventilgaskartusche £7,95 5
D e de_3201212002 Deuter Hydro 2,0 £74,95 25
D G de_3203104010 Deuter Kangaroo £99,95 10
D G de_3206199010 Deuter Schrusebar £26,95 11
0| @ =o_teee111010 Eureka El Capitan Iv £339,95 1z
D G er_7142303001 Edelrid Black Bear Seil £1,45 S00
@l L

i [

Ausfihren |

] 03 ;
= Gecle & ([erechen | Nibie soseihien
¢+ Produkte - Allgemein G (bitte auswihlen)
v shop-Administratar .. ga é?:ﬁfh'i?ici'ftﬁen
* Preducts - General i Micht sichtbar schalten
¢ Leatherman Tool Sur... SR Duplizieran
Kategarie zuweisen...
v Verlauf leeren]

Figure 38: New batch process in the English display

ePages 5 - Design and Cartridge Development Guide

Page 199

Glossary

Application server

Back office

Batch processing

Business unit

Cartridge

Data cache

Fallback

Folder

Language tag

Localization

Glossary

In this context, this is an instance of the ePages program. One computer can
contain several application serverinstances. This is done by starting the
ePages Windows service.

An application server can also be a server that provides a number of
services or programs within a network. In our case, this is the server on
which the ePages application runs.

All the administration Web pages used to help merchants manage their
shops and administrators to manage how the shops are used.

An action that affects multiple elements at one time. This option is offered
in tables where multiple instances of the same action can be combined into
a multiple or batch process, for example, deleting multiple lines in a table at
once.

Unit consisting of a database and its assigned cartridges. The functions in
the cartridges provide the functionality of the business unit.

Software module written in PERL. Every cartridge contains defined functions.
Cartridges can be combined to create business units with different
functions.

Data storage cache in the application server. Data that are repeatedly
needed are stored here. This prevents repeated database queries and
significantly reduces response times.

Mechanism for overlaying original files. Files for this are created in a
specialized directory. These files overwrite the functions of the original files
and are processed in their place.

A processing sequence for these files is defined in the system. This
sequence first searches the specified directory for the required files. If they
are not present, the original files are used.

Afolderis a logical level in the object structure. Each object is able to save
references to other objects and thereby becomes the folder for these
objects. An example is orders assigned to a customer. In this case, the
customer object is the folder for the objects for the individual orders.

No inheritance relationships according to class structure are required.

HTML extension that supports multiple languages in the application.
Language tags are inserted as placeholders in templates. They are replaced
by the corresponding language-sensitive content when the template is
processed. The language content is saved in and read from XML files.

Preparing the data and content of a Web page so it can be displayed in
another language. For this, the corresponding languages, formats, and
currencies must be provided in the system. Language tags are used to
prepare the templates for displaying multiple languages. Some attributes
can be localized, that is, you can collect different values for these attributes
in various languages. They are then displayed in the respective language,
for example, descriptions or names.

ePages 5 - Design and Cartridge Development Guide Page 201

Glossary

Shop types

Site

Site database

Store database

Storefront

Style

Template

TLE

Web Services

Web shop

Products the business administrator sells or leases to merchants or shop
operators. Each shop type is offered with specific functions and usually also
in various price classes. Merchants select from among these shop types to
create their own shops.

A) Object class in each database; Shop base classes
b) Name of the administration database in the default installation where the
TBO and BBO are installed.

The ePages default installation database where the administration data for
the application are saved. Technical and business administrators have
access. Here, the databases which belong to the application and also
certain basic settings, for example, for Web services and Web servers are
managed. Business administrators also manage the shops and shop types
here.

The ePages default installation database in which the data for the individual
shops are saved. Merchants use this database to manage their shops and
edit product, customer, and order data. This database provides the dynamic
content for the store front.

The "customer page" of a Web shop. All the Web pages that belongto a
shop.

All the data and instructions for displaying the Web pages. In addition to a
.css file, information such as graphics, button icons, color design are a part
of the style.

HTML file for describing a Web page or certain defined areas on the Web
page. In addition to the "normal" instructions for designing Web pages,
ePages-specific extensions called 7Z£sand language tags are used.

Template Language Extension. ePages-specific language extensions that
can be optionally integrated into HTML source code. They enable the
integration and evaluation of dynamic content and, therefore, make
programming Web pages more flexible.

Web services allow communication between different applications. They
offer the ability to link applications that run on various platforms and are
implemented in different programming languages, and also to transfer data
between various applications.

Web services use standard Internet protocols to transfer data such as HTTP,
SMTP, and FTP. HTTP is used most often because a direct reaction to the
query is possible, while SMTP and FTP only allow asynchronous data
transfer.

An Internet application that contains all the functions necessary for selling
products or services. In ePages 5, the shop is created based upon a shop
type defined by the ePages business administrator. The merchant generates
a shop online, modifies the structure and design, and enters his products
and services into the system to open his Internet sales channel.

Page 202

ePages 5 - Design and Cartridge Development Guide

Index

A
Attributes

C

Cartridges
Creating a Structure
Installation
Installer
Structure
Targets
ChangeActions
Compiled File

D

Debugging

Diagnostics Cartridge
Distribution

Dynamic TLE Variables--Creating

E

Encryption
Error Handling in Template
Export

Export.pl

F

Fallback

Features

Form Handling
FormFields
Formhandling
Forms in PERL Code

H

Hooks

Import
Forms
Hooks
/mport.pl
Standards.pl
Inheritance

L

Language Tags
Syntax
XML File

M

make

15

81

83
85
83
81
85
29
32

36
125
89
76

89
99
113
116

35
93
95
96
96
97

109

113
115
115
114
115

11

31,33, 49
49
50

85

makefile
Multiple Languages

N

nmake

0]

Object API
Object Orientation
Original Template
Overlaying

P

PageTypes
Concept
Display Levels
Inheritance
Logical Structure
Original Template

R

Rights
Roles

S

Scheduler
New Perl Script Tasks
Output
Perl Script Tasks
Starting
Starting
Stopping
UNIX Shell Script Tasks
Selection Styles
Creating
Styles
Sub-Styles

T

Tasks

Template
Process

Template Process

Templates
Hierarchy

TLE
Error Handling
Error TLE
Statements
Syntax
Variable

TLE Formatter Creation

Index

85
49

85

12
11
41
35

39
41
41
39
41

21
21

119
120
122
119
122
121
121
120
129
129
129
133

119
31
31
31

42
61
69
69
63
61
61
78

ePages 5 - Design and Cartridge Development Guide

Page 203

Index

TLE Function Creation

TLE Statements
Operators

TLE Variables
Data Sources
Formatting

U

URL actions
ChangeActions
URL Actions
ViewActions
User/Customer Separation

75
63
73
61
62
71

29
29
29
25

\Y

ViewAction
ViewActions

W

Web Page Structure
Web Services

Web Services Framework:

X

XML Language Files
Overlaying

41
29

35
101
101

50
55

Page 204

ePages 5 - Design and Cartridge Development Guide

	Introduction
	Contents of this Guide
	Requirements
	Typographic Conventions

	Basic Principles
	Object Orientation
	Inheritance
	Object API

	Attributes
	Language-dependent Attributes
	Attributes with Pre-defined Values
	Reference Attributes
	Adding Attributes
	Attribute API

	Rights and Roles
	Registering Actions for Objects
	Assigning Actions to Roles
	Assigning Rights

	Difference Between User and Customer
	URL Actions
	ViewActions
	ChangeActions

	Templates
	Technology
	Template Process
	Basic Web Page Structure
	Overlaying Templates
	Template Debugging

	PageType Concept
	Logical Structure
	Display Levels
	Original Template
	Template Hierarchy
	Object Method template

	Processing PageTypes

	Multiple Languages–Language Tags
	Syntax for Language Tags
	Using XML Language Files
	Overlaying XML Language Files
	Localising Database Content

	TLE
	Syntax for TLE
	TLE Variables
	TLE Statements
	#IF
	#INCLUDE
	#LOCAL
	#SET
	#GET
	#CALCULATE
	#WITH
	#LOOP
	#JOIN
	#FUNCTION
	#BLOCK
	#WITH_LANGUAGE
	#REM

	Error TLE
	#FormError
	#FormError_<InputField>
	#FORM_ERROR
	#FormErrors.<…>
	#WITH_ERROR
	#ERROR_VALUE

	Formatting TLE Variables
	Operators
	Creating a TLE Function
	Creating Dynamic TLE Variables
	Creating a TLE Formatter

	Cartridge Development
	Cartridges
	Cartridge Structure
	Creating a Cartridge Structure
	Installer / Cartridge.pm
	Installing - nmake
	Uninstalling
	Copying Cartridge Directories
	Back Office Extensions

	Creating a Distribution
	Encryption

	Additional Concepts
	Creating Features
	Form Handling
	Error Handling for Object Attributes
	Error Handling for Freely-Definable Forms
	Definition of FormFields
	Using Forms in Perl Code
	Validation of Undefined Data Types
	Error Handling Templates
	Error display for individual fields
	Error Display in Lists
	Display of all errors of a template in a list

	Web Services
	ePages Web Services and Framework
	Generate ePages Web Service
	Register
	Authorization
	Implementation

	External Clients for ePages 15.3 Web Services
	Implementing an ePages Web Service Client

	Hooks
	Providing a Hook
	Function Extensions Using Hooks

	Import / Export of database contents
	Import Files
	XML Import
	Special Case : standards.pl
	Special Case: Hooks
	Special Case: Forms

	XML Export

	Scheduler
	Configuring Perl Script Tasks
	Creating New Perl Script Tasks
	Configuring UNIX Shell Script Tasks
	Starting and Stopping
	Scheduler Task Output

	Diagnostics Cartridge
	Installation
	Usage

	Design
	Styles
	Selection Styles
	Creating Selection Styles
	Creating an Image Set
	Creating an Icon Set
	Sub-Styles

	Appendixes
	Appendix A: Performance Tuning
	General Procedures
	Page Caching
	Template Processing
	Process Priorities
	Reducing Response Times of the Initial Request
	Debugging Information
	Shop Settings
	System Monitoring with Spy.pl
	Installation

	Procedures During Development
	Template Analysis
	Partial Caching
	Using #LOCAL Instructions
	Separating Complex TLE Blocks

	Appendix B: Developer Notes
	Adding E-Mail Events
	Creating a MailType
	Creating a PageType and Assigning it to a Template
	Implementing the Function
	Registering an Action and Defining a Permission

	Extension of Cross-Selling Types
	Define Table
	Create Classes
	Extending Product Attributes
	Creating Templates and PageTypes
	Register and Implement Functions

	Creating Shops via Web Services and Scripts
	Patching Cartridges
	Integrate your own online Help
	Make the Help Page Available
	Assigning a ViewAction
	Display Code in Templates

	Dynamic Menus
	Shopping basket template and LineItems
	LineItems

	Appendix C: Usage Examples (UE)
	UE 1: Integrating your own .css file
	UE 2: Extending the Storefront Style
	UE 3: Changes in the template
	UE 4: Customizing the Back Office Design (Branding)
	UE 5: Deactivating the Design Tool
	UE 6: Design Changes using PageTypes
	UE 7: New Batch Processing Commands in the MBO
	Glossary
	Index

